Astrophysics and Space Science

, Volume 339, Issue 2, pp 365–369 | Cite as

LRS Bianchi type-I cosmological model in f(R,T) theory of gravity

Original Article

Abstract

The exact solutions of the field equations in respect of LRS Bianchi type-I space time filled with perfect fluid in the framework of f(R,T) gravity (Harko et al., arXiv:1104.2669v2 [gr-qc], 2011) are derived. The physical behavior of the model is studied. In fact, the possibility of reconstruction of the LRS Bianchi type-I cosmology with an appropriate choice of a function f(T) has been proved in f(R,T) gravity.

Keywords

f(R,T) gravity LRS Bianchi type-I space-time Constant deceleration parameter 

References

  1. Allemandi, G., et al.: Phys. Rev. D 72, 063505 (2005). arXiv:gr-qc/0504057 ADSCrossRefGoogle Scholar
  2. Bergman, M.S.: Nuovo Cimento B 74, 182 (1983) ADSCrossRefGoogle Scholar
  3. Bertolami, O., et al.: Phys. Rev. D 75, 104016 (2007) MathSciNetADSCrossRefGoogle Scholar
  4. Brans, C.H., Dicke, R.H.: Phys. Rev. 24, 925 (1961) MathSciNetADSCrossRefGoogle Scholar
  5. Canuto, V., et al.: Phys. Rev. Lett. 39, 429 (1977) ADSMATHCrossRefGoogle Scholar
  6. Capozziello, S., Faraoni, V.: Beyond Einstein Gravity. Springer, Berlin (2010) Google Scholar
  7. Carroll, S.M., et al.: Phys. Rev. D 70, 043528 (2004) ADSCrossRefGoogle Scholar
  8. Felice, A.D., Tsujikawa, S.: arXiv:1002.4928 [gr-qc] (2010)
  9. Harko, T.: Phys. Lett. B 669, 376 (2008) MathSciNetADSCrossRefGoogle Scholar
  10. Harko, T.: Phys. Rev. D 81, 044021 (2010) ADSCrossRefGoogle Scholar
  11. Harko, T., Lobo, F.S.N.: Eur. Phys. J. C 70, 373 (2010) ADSCrossRefGoogle Scholar
  12. Harko, T., et al.: arXiv:1007.4415 (2010)
  13. Harko, T., et al.: arXiv:1104.2669 [gr-qc] (2011)
  14. Kramer, D., et al.: Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge (1980) MATHGoogle Scholar
  15. Lobo, F.S.N.: arXiv:0807.1640 [gr-qc] (2010)
  16. Nojiri, S., Odintsov, S.D.: arXiv:hep-th/0307288 (2003a)
  17. Nojiri, S., Odintsov, S.D.: Phys. Lett. B 562, 147 (2003b) arXiv:hep-th/0303117 MathSciNetADSMATHCrossRefGoogle Scholar
  18. Nojiri, S., Odintsov, S.D.: arXiv:astro-ph/0403622 (2004)
  19. Nojiri, S., Odintsov, S.D.: arXiv:hep-th/0608008 (2006a)
  20. Nojiri, S., Odintsov, S.D.: arXiv:hep-th/0601213 (2006b)
  21. Nojiri, S., Odintsov, S.D.: Talks given at the International Conferences YKIS 2010, Gravitation and Cosmology (YITP, Kyoto) and QFTG-10 (Tomsk) (2010). arXiv:1008.4275
  22. Nojiri, S., Odintsov, S.D.: Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models, to appear in Phys. Rep. (2011). arXiv:1011.0544
  23. Nojiri, S., et al.: arXiv:hep-th/0608168 (2006)
  24. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999) ADSCrossRefGoogle Scholar
  25. Poplawski, N.J.: arXiv:gr-qc/0608031 (2006)
  26. Riess, A.G., et al.: Astron. J. 116, 1009 (1998) ADSCrossRefGoogle Scholar
  27. Riess, A.G., et al.: Astron. J. 117, 707 (1999) ADSCrossRefGoogle Scholar
  28. Riess, A.G., et al.: Astrophys. J. 607, 665 (2004) ADSCrossRefGoogle Scholar
  29. Saez, X., Ballester, V.J.: Phys. Lett. A 113, 467 (1985) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of MathematicsSant Gadge Baba Amravati UniversityAmravatiIndia

Personalised recommendations