Advertisement

Astrophysics and Space Science

, Volume 338, Issue 1, pp 9–13 | Cite as

The Solar Cycle: a new prediction technique based on logarithmic values

  • Z. L. Du
Original Article

Abstract

A new prediction technique based on logarithmic values is proposed to predict the maximum amplitude (R m) of a solar cycle from the preceding minimum aa geomagnetic index (aa min). The correlation between lnR m and lnaa min (r=0.92) is slightly stronger than that between R m and aa min (r=0.90). From this method, cycle 24 is predicted to have a peak size of R m(24)=81.7(1±13.2%). If the suggested error in aa (3 nT) before 1957 is corrected, the correlation coefficient between R m and aa min (r=0.94) will be slightly higher, and the peak of cycle 24 is predicted much lower, R m(24)=52.5±13.1. Therefore, the prediction of R m based on the relationship between R m and aa min depends greatly on the accurate measurement of aa.

Keywords

Space weather The Sun The Solar Cycle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babcock, H.W.: Astrophys. J. 133, 572 (1961) ADSCrossRefGoogle Scholar
  2. Brown, G.M., Williams, W.R.: Planet. Space Sci. 17, 455 (1969) ADSCrossRefGoogle Scholar
  3. Cameron, R., Schüssler, M.: Astrophys. J. 659, 801 (2007) ADSCrossRefGoogle Scholar
  4. Charvátová, I.: New Astron. 14, 25 (2009) ADSCrossRefGoogle Scholar
  5. Choudhuri, A.R., Chatterjee, P., Jiang, J.: Phys. Rev. Lett. 98, 131103 (2007) ADSCrossRefGoogle Scholar
  6. Dabas, R.S., Sharma, K., Das, R.M., Pillai, K.G.M., Chopra, P., Sethi, N.K.: Sol. Phys. 250, 171 (2008) ADSCrossRefGoogle Scholar
  7. De Jager, C., Versteegh, G.J.M.: Sol. Phys. 229, 175 (2005) ADSCrossRefGoogle Scholar
  8. Dikpati, M., de Toma, G., Gilman, P.A.: Geophys. Res. Lett. 33, L05102 (2006) CrossRefGoogle Scholar
  9. Du, Z.L.: Sol. Phys. 407, 270 (2011a) Google Scholar
  10. Du, Z.L.: Ann. Geophys. 29, 1331 (2011b) ADSCrossRefGoogle Scholar
  11. Du, Z.L.: Ann. Geophys. 29, 1005 (2011c) ADSCrossRefGoogle Scholar
  12. Du, Z.L.: Sol. Phys. 273, 231 (2011d). doi: 10.1007/s11207-011-9849-8 ADSCrossRefGoogle Scholar
  13. Du, Z.L., Wang, H.N.: Res. Astron. Astrophys. 10, 950 (2010) CrossRefADSGoogle Scholar
  14. Du, Z.L., Li, R., Wang, H.N.: Astron. J. 138, 1998 (2009) ADSCrossRefGoogle Scholar
  15. Feynman, J.: J. Geophys. Res. 87, 6153 (1982) ADSCrossRefGoogle Scholar
  16. Grandpierre, A.: Astrophys. Space Sci. 243, 393 (1996) ADSCrossRefGoogle Scholar
  17. Hathaway, D.H., Wilson, R.M.: Geophys. Res. Lett. 33, 18101 (2006) ADSCrossRefGoogle Scholar
  18. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: J. Geophys. Res. 104, 22375 (1999) ADSCrossRefGoogle Scholar
  19. Hiremath, K.M.: Astrophys. Space Sci. 314, 45 (2008) ADSCrossRefGoogle Scholar
  20. Javaraiah, J.: Sol. Phys. 252, 419 (2008) ADSCrossRefGoogle Scholar
  21. Kane, R.P.: Sol. Phys. 243, 205 (2007) ADSCrossRefGoogle Scholar
  22. Kane, R.P.: Ann. Geophys. 28, 1463 (2010) ADSCrossRefGoogle Scholar
  23. Lantos, P., Richard, O.: Sol. Phys. 182, 231 (1998) ADSCrossRefGoogle Scholar
  24. Layden, A.C., Fox, P.A., Howard, J.M., Sarajedini, A., Schatten, K.H., Sofia, S.: Sol. Phys. 132, 1 (1991) ADSCrossRefGoogle Scholar
  25. Lockwood, M., Stamper, R., Wild, M.N.: Nature 399, 437 (1999) ADSCrossRefGoogle Scholar
  26. Love, J.J.: Ann. Geophys. 29, 1365 (2011) ADSCrossRefGoogle Scholar
  27. Lukianova, R., Alekseev, G., Mursula, K.: J. Geophys. Res. 114, A02105 (2009) CrossRefGoogle Scholar
  28. Mayaud, P.N.: J. Geophys. Res. 77, 6870 (1972) ADSCrossRefGoogle Scholar
  29. Messerotti, M., Zuccarello, F., Guglielmino, S.L., Bothmer, V., Lilensten, J., Noci, G., Storini, M., Lundstedt, H.: Space Sci. Rev. 147, 121 (2009) ADSCrossRefGoogle Scholar
  30. Nevanlinna, H.: Ann. Geophys. 22, 1691 (2004) ADSCrossRefGoogle Scholar
  31. Nevanlinna, H., Kataja, E.: Geophys. Res. Lett. 20, 2703 (1993) ADSCrossRefGoogle Scholar
  32. Ohl, A.I.: Soln. Dannye 12, 84 (1966) Google Scholar
  33. Ohl, A.I.: Soln. Dannye 9, 73 (1976) ADSGoogle Scholar
  34. Parker, E.N.: Astrophys. J. 122, 293 (1955) MathSciNetADSCrossRefGoogle Scholar
  35. Pesnell, W.D.: Sol. Phys. 252, 209 (2008) ADSCrossRefGoogle Scholar
  36. Petrovay, K.: Living Rev. Sol. Phys. 7, 6 (2010) ADSGoogle Scholar
  37. Ramesh, K.B., Lakshmi, N.B.: Sol. Phys. (2011). arXiv:1109.2700v1
  38. Schatten, K.H.: Geophys. Res. Lett. 32, 21105 (2005) ADSCrossRefGoogle Scholar
  39. Schatten, K.H., Scherrer, P.H., Svalgaard, L., Wilcox, J.M.: Geophys. Res. Lett. 5, 411 (1978) ADSCrossRefGoogle Scholar
  40. Shastri, S.: Sol. Phys. 180, 499 (1998) ADSCrossRefGoogle Scholar
  41. Svalgaard, L., Cliver, E.W., Le Sager, P.: Adv. Space Res. 34, 436 (2004) ADSCrossRefGoogle Scholar
  42. Tan, B.: Astrophys. Space Sci. 332, 65 (2011) ADSCrossRefGoogle Scholar
  43. Thompson, R.J.: Sol. Phys. 148, 383 (1993) ADSCrossRefGoogle Scholar
  44. Tlatov, A.G.: Astrophys. Space Sci. 323, 221 (2009) ADSCrossRefGoogle Scholar
  45. Wang, Y.M., Sheeley, N.R.: Astrophys. J. 694, L11 (2009) ADSCrossRefGoogle Scholar
  46. Wilson, R.M.: Sol. Phys. 125, 143 (1990) ADSCrossRefGoogle Scholar
  47. Vitinskij, Yu.I., Kopetskij, M., Kuklin, G.V.: Statistics of the Spot-Forming Activity of the Sun, p. 296. Nauka, Moscow (1986) Google Scholar
  48. Waldmeier, M.: Astron. Mitt. (Zur.) 14, 439 (1939) ADSGoogle Scholar
  49. Wood, R.M.: Nature 255, 312 (1975) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Key Laboratory of Solar Activity, National Astronomical ObservatoriesChinese Academy of SciencesBeijingChina

Personalised recommendations