Skip to main content

Evidence for a disaggregation of the universe

Abstract

Combining the kinematical definitions of the two dimensionless parameters, the deceleration q(x) and the Hubble t 0 H(x), we get a differential equation (where x=t/t 0 is the age of the universe relative to its present value t 0). First integration gives the function H(x). The present values of the Hubble parameter H(1) [approximately t 0 H(1)≈1], and the deceleration parameter [approximately q(1)≈−0.5], determine the function H(x). A second integration gives the cosmological scale factor a(x). Differentiation of a(x) gives the speed of expansion of the universe. The evolution of the universe that results from our approach is: an initial extremely fast exponential expansion (inflation), followed by an almost linear expansion (first decelerated, and later accelerated). For the future, at approximately t≈3t 0 there is a final exponential expansion, a second inflation that produces a disaggregation of the universe to infinity. We find the necessary and sufficient conditions for this disaggregation to occur. The precise value of the final age is given only with one parameter: the present value of the deceleration parameter [q(1)≈−0.5]. This emerging picture of the history of the universe represents an important challenge, an opportunity for the immediate research on the Universe. These conclusions have been elaborated without the use of any particular cosmological model of the universe.

This is a preview of subscription content, access via your institution.

References

  • Akarsu, Ö., Dereli, T.: Cosmological models with linearly varying deceleration parameter. arXiv:1102.0915, v1 [gr-qc], 4 Feb. 2011

  • Alfonso-Faus, A.: The case for the Universe to be a quantum black hole, arXiv:0912.1048, 2010, also in J. Astrophys. Space Sci. 325, 113–117 (2010)

    Google Scholar 

  • Alfonso-Faus, A.: Cosmology, holography, the brain and the quantum vacuum, arXiv:1102.0443, 22 Feb. 2011 and at Plenary Lecture WSEAS Aiked 11, University of Cambridge

  • Caldwell, R.R.: A phantom menace? arXiv:astro-ph/9908168, v2, 15 Sep. 2002

  • Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phantom energy: dark energy with w<−1 causes a cosmic doomsday. Phys. Rev. Lett. 91, 071301 (2003)

    Article  ADS  Google Scholar 

  • Gurzadyan, V.G., Penrose, R.: More on the low variance circles in CMB sky, arXiv:1012.1486, 2011

  • Guth, A.H.: Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  • Li, Z., et al.: Probing the course of cosmic expansion with a combination of observational data, arXiv:1011.2036v1 [gr-qc], 9 Nov. 2010

  • Li, Z., Wu, P., Yu, H.: Examining the cosmic acceleration with the latest Union2 supernova data. Phys. Lett. B 695, 1–8 (2011)

    Article  ADS  Google Scholar 

  • Linde, A.: A new inflationary universe scenario. Phys. Lett. B 108, 389 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  • McInnes, B.: The dS/CFT correspondence and the big smash. J. High Energy Phys. 0208, 029 (2002) and arXiv:hep-th/0112066, v4, 10 Aug. 2002

    Article  ADS  MathSciNet  Google Scholar 

  • Pandolfi, S.: When did cosmic acceleration start? Nucl. Phys. B 194, 294–299 (2009)

    Article  Google Scholar 

  • Sivaram, C., Kenath, A.: Enigmatic aspects of the early universe: possibility of a “pre-big bang phase”. Astrophys. Space Sci. 333, 9–10 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Alfonso-Faus.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alfonso-Faus, A. Evidence for a disaggregation of the universe. Astrophys Space Sci 337, 367–372 (2012). https://doi.org/10.1007/s10509-011-0806-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-011-0806-7

Keywords

  • Cosmology
  • Hubble
  • Deceleration parameter
  • Initial inflation
  • Accelerated expansion
  • Final inflation
  • Disaggregation