Skip to main content
Log in

Redshift evolution of angular diameters and surface brightness: how rigid are galactic measuring rods?

  • Letter
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The effect of a cosmic time variation of Newton’s constant on galactic angular diameters, linear size, apparent magnitude, and surface brightness is investigated. The redshift scaling of the gravitational constant is proportional to the Hubble parameter, derived from the constancy of a moderate dimensionless ratio of fundamental constants, and manifested in galactic linear-size evolution. The latter is demonstrated by fitting the angular size–redshift relation to spectroscopically and photometrically selected samples of high-redshift rotators. The intrinsic luminosity evolution of the rotators and their magnitude–redshift and surface brightness–redshift relations are studied. The galactic luminosity scales with a power of the Hubble parameter, and the scaling exponent is inferred from a moderate dimensionless ratio involving the gravitational constant, the Galactic luminosity, and the velocity of the Galaxy in the microwave background. The fits are performed with a cosmic expansion factor derived from paleoplanetary surface temperatures. This expansion factor is tested by comparing the corresponding redshift evolution of the angular-size distance to the distance estimates of two samples of galaxy clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Barthel, P.D., Miley, G.K.: Evolution of radio structure in quasars—a new probe of protogalaxies? Nature 333, 319 (1988)

    Article  ADS  Google Scholar 

  • Blundell, K.M., Rawlings, S., Willott, C.J.: The nature and evolution of classical double radio sources from complete samples. Astron. J. 117, 677 (1999)

    Article  ADS  Google Scholar 

  • Bonamente, M., et al.: Determination of the cosmic distance scale from Sunyaev–Zel’dovich effect and Chandra X-ray measurements of high-redshift galaxy clusters. Astrophys. J. 647, 25 (2006)

    Article  ADS  Google Scholar 

  • Buchalter, A., et al.: Constraining Ω0 with the angular size–redshift relation of double-lobed quasars in the FIRST survey. Astrophys. J. 494, 503 (1998)

    Article  ADS  Google Scholar 

  • Dabrowski, Y., Lasenby, A., Saunders, R.: Testing the angular-size versus redshift relation with compact radio sources. Mon. Not. R. Astron. Soc. 277, 753 (1995)

    ADS  Google Scholar 

  • De Filippis, E., et al.: Measuring the three-dimensional structure of galaxy clusters. I. Application to a sample of 25 clusters. Astrophys. J. 625, 108 (2005)

    Article  ADS  Google Scholar 

  • Dirac, P.A.M.: The cosmological constants. Nature 139, 323 (1937)

    Article  ADS  MATH  Google Scholar 

  • Dyson, F.J.: The fundamental constants and their time variation. In: Salam, A., Wigner, E.P. (eds.) Aspects of Quantum Theory. Cambridge University Press, Cambridge (1972)

    Google Scholar 

  • Gallagher, J.S., et al.: Supernovae in early-type galaxies: directly connecting age and metallicity with Type Ia luminosity. Astrophys. J. 685, 752 (2008)

    Article  ADS  Google Scholar 

  • Gough, D.O.: Solar interior structure and luminosity variations. Solar Phys. 74, 21 (1981)

    Article  ADS  Google Scholar 

  • Guenther, D.B., Krauss, L.M., Demarque, P.: Testing the constancy of the gravitational constant using helioseismology. Astrophys. J. 498, 871 (1998)

    Article  ADS  Google Scholar 

  • Gurvits, L.I., Kellermann, K.I., Frey, S.: The “angular size–redshift” relation for compact radio structures in quasars and radio galaxies. Astron. Astrophys. 342, 378 (1999)

    ADS  Google Scholar 

  • Holanda, R.F.L., Lima, J.A.S., Ribeiro, M.B.: Testing the distance-duality relation with galaxy clusters and Type Ia supernovae. Astrophys. J. 722, L233 (2010)

    Article  ADS  Google Scholar 

  • Kapahi, V.K.: Redshift and luminosity dependence of the linear sizes of powerful radio galaxies. Astron. J. 97, 1 (1989)

    Article  ADS  Google Scholar 

  • Kolachevsky, N., et al.: Testing the stability of the fine structure constant in the laboratory. Space Sci. Rev. 148, 267 (2009)

    Article  ADS  Google Scholar 

  • Komatsu, E., et al.: Seven-year Wilkinson Microwave Anisotropy Probe observations: cosmological interpretation. Astrophys. J. Suppl. (2010). arXiv:1001.4538

  • La Barbera, F., et al.: On the invariant distribution of galaxies in the r e −〈μ e plane out to z=0.64. Astrophys. J. 595, 127 (2003)

    Article  ADS  Google Scholar 

  • Lacy, M., et al.: Optical spectroscopy of two overlapping, flux-density-limited samples of radio sources in the North Ecliptic Cap, selected at 38 and 151 MHz. Mon. Not. R. Astron. Soc. 308, 1096 (1999)

    Article  ADS  Google Scholar 

  • Lubin, L.M., Sandage, A.: The Tolman surface brightness test for the reality of the expansion. IV. A measurement of the Tolman signal and the luminosity evolution of early-type galaxies. Astron. J. 122, 1048 (2001)

    ADS  Google Scholar 

  • Marinoni, C., et al.: Geometrical tests of cosmological models. III. The cosmology-evolution diagram at z=1. Astron. Astrophys. 478, 71 (2008)

    Article  ADS  MATH  Google Scholar 

  • Mason, B.S., Myers, S.T., Readhead, A.C.S.: A measurement of H 0 from the Sunyaev–Zeldovich effect. Astrophys. J. 555, L11 (2001)

    Article  ADS  Google Scholar 

  • Müller, J., Biskupek, L.: Variations of the gravitational constant from lunar laser ranging data. Class. Quantum Gravity 24, 4533 (2007)

    Article  MATH  Google Scholar 

  • Nakamura, K., et al.: Review of particle physics. J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  • Neeser, M., et al.: The linear-size evolution of classical double radio sources. Astrophys. J. 451, 76 (1995)

    Article  ADS  Google Scholar 

  • Nilsson, K., et al.: On the redshift–apparent size diagram of double radio sources. Astrophys. J. 413, 453 (1993)

    Article  ADS  Google Scholar 

  • Oort, M.J.A., Katgert, P., Windhorst, R.A.: A direct determination of linear size evolution of elliptical radio galaxies. Nature 328, 500 (1987)

    Article  ADS  Google Scholar 

  • Pahre, M.A., Djorgovski, S.G., de Carvalho, R.R.: A Tolman surface brightness test for universal expansion and the evolution of elliptical galaxies in distant clusters. Astrophys. J. 456, L79 (1996)

    Article  ADS  Google Scholar 

  • Percival, W.J., et al.: Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy sample. Mon. Not. R. Astron. Soc. 401, 2148 (2010)

    Article  ADS  Google Scholar 

  • Reese, E.D., et al.: Determining the cosmic distance scale from interferometric measurements of the Sunyaev–Zeldovich effect. Astrophys. J. 581, 53 (2002)

    Article  ADS  Google Scholar 

  • Reid, B.A., et al.: Cosmological constraints from the clustering of the Sloan Digital Sky Survey DR7 luminous red galaxies. Mon. Not. R. Astron. Soc. 404, 60 (2010)

    Article  ADS  Google Scholar 

  • Rosenband, T., et al.: Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808 (2008)

    Article  ADS  Google Scholar 

  • Sagan, C., Chyba, C.: The early faint Sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science 276, 1217 (1997)

    Article  ADS  Google Scholar 

  • Saintonge, A., et al.: Geometrical tests of cosmological models. II. Calibration of rotational widths and disc scaling relations. Astron. Astrophys. 478, 57 (2008)

    Article  ADS  Google Scholar 

  • Sandage, A.: The Tolman surface brightness test for the reality of the expansion. V. Provenance of the test and a new representation of the data for three remote HST galaxy clusters. Astron. J. 139, 728 (2010)

    Article  ADS  Google Scholar 

  • Sandage, A., et al.: The Hubble constant: a summary of the Hubble Space Telescope program for the luminosity calibration of Type Ia supernovae by means of Cepheids. Astrophys. J. 653, 843 (2006)

    Article  ADS  Google Scholar 

  • Sandage, A., Reindl, B., Tammann, G.A.: The linearity of the cosmic expansion field from 300 to 30.000 km s−1 and the bulk motion of the Local Supercluster with respect to the CMB. Astrophys. J. 714, 1441 (2010)

    Article  ADS  Google Scholar 

  • Setare, M.R., Jamil, M.: Holographic dark energy with varying gravitational constant in Hořava–Lifshitz cosmology. J. Cosmol. Astropart. Phys. 02, 010 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  • Shelkovnikov, A., et al.: Stability of the proton-to-electron mass ratio. Phys. Rev. Lett. 100, 150801 (2008)

    Article  ADS  Google Scholar 

  • Singal, A.K.: Cosmic evolution of the physical sizes of extragalactic radio sources and their luminosity–size correlation. Mon. Not. R. Astron. Soc. 233, 87 (1988)

    ADS  Google Scholar 

  • Singal, A.K.: Cosmic evolution and luminosity dependence of the physical sizes of powerful radio galaxies and quasars. Mon. Not. R. Astron. Soc. 263, 139 (1993)

    ADS  Google Scholar 

  • Sneden, C., Cowan, J.J., Gallino, R.: Neutron-capture elements in the early Galaxy. Annu. Rev. Astron. Astrophys. 46, 241 (2008)

    Article  ADS  Google Scholar 

  • Stritzinger, M., et al.: Constraints on the progenitor systems of Type Ia supernovae. Astron. Astrophys. 450, 241 (2006)

    Article  ADS  Google Scholar 

  • Teller, E.: On the change of physical constants. Phys. Rev. 73, 801 (1948)

    Article  ADS  Google Scholar 

  • Tomaschitz, R.: Ether, luminosity and galactic source counts. Astrophys. Space Sci. 259, 255 (1998)

    Article  ADS  MATH  Google Scholar 

  • Tomaschitz, R.: Cosmic time variation of the gravitational constant. Astrophys. Space Sci. 271, 181 (2000a)

    Article  ADS  MATH  Google Scholar 

  • Tomaschitz, R.: Faint young Sun, planetary paleoclimates and varying fundamental constants. Int. J. Theor. Phys. 44, 195 (2005)

    Article  MATH  Google Scholar 

  • Tomaschitz, R.: Superluminal cascade spectra of TeV γ-ray sources. Ann. Phys. 322, 677 (2007)

    Article  ADS  MATH  Google Scholar 

  • Tomaschitz, R.: Effect of a varying gravitational constant on the SN Ia Hubble diagram, AGN luminosity evolution, and X-ray source counts. Astrophys. Space Sci. 325, 259 (2010)

    Article  ADS  MATH  Google Scholar 

  • Tomaschitz, R.: Tachyons, Lamb shifts and superluminal chaos. Eur. Phys. J. B 17, 523 (2000b)

    Article  MathSciNet  ADS  Google Scholar 

  • Tomaschitz, R.: Conformal tachyons. Int. J. Mod. Phys. A 15, 3019 (2000c)

    MathSciNet  ADS  MATH  Google Scholar 

  • Tomaschitz, R.: Superluminal radiation by uniformly moving charges. Physica A 320, 329 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  • Varshalovich, D.A., et al.: Current status of the problem of cosmological variability of fundamental physical constants. In: Karshenboim, S.G., Smirnov, V.B. (eds.) Precision Physics of Simple Atomic Systems. Lecture Notes in Physics, vol. 627. Springer, Berlin (2003)

    Chapter  Google Scholar 

  • Williams, J.G., Turyshev, S.G., Boggs, D.H.: Progress in lunar laser ranging tests of relativistic gravity. Phys. Rev. Lett. 93, 261101 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Tomaschitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomaschitz, R. Redshift evolution of angular diameters and surface brightness: how rigid are galactic measuring rods?. Astrophys Space Sci 331, 397–408 (2011). https://doi.org/10.1007/s10509-010-0538-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-010-0538-0

Keywords

Navigation