Advertisement

Astrophysics and Space Science

, Volume 315, Issue 1–4, pp 347–352 | Cite as

Plane symmetric cosmological models with negative constant deceleration parameter in self creation theory

  • S. D. Katore
  • R. S. Rane
  • V. B. Kurkure
Original Article

Abstract

In this paper, we have investigated plane symmetric cosmological models with negative constant deceleration parameter in Barber’s (Gen. Relativ. Gravit. 14:117, 1982) second self-creation theory in presence of perfect fluid source. For this we use a special law of variation for Hubble parameter proposed by Bermann (Nuovo Cim. B 74:182, 1983) that yields a constant deceleration parameter model of the universe. Some physical properties of the models and entropy are discussed and studied.

Keywords

Plane symmetry Cosmology Hubble parameter Perfect fluid Self-creation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barber, G.A.: Gen. Relativ. Gravit. 14, 117 (1982). doi: 10.1007/BF00756918 CrossRefADSMathSciNetGoogle Scholar
  2. Bermann, M.S.: Nuovo Cim. B 74, 182 (1983). doi: 10.1007/BF02721676 CrossRefADSGoogle Scholar
  3. Brans, C.: Gen. Relativ. Gravit. 19, 949 (1987). doi: 10.1007/BF00759299 CrossRefADSMathSciNetGoogle Scholar
  4. Brans, C., Dicke, R.H.: Phys. Rev. 124, 925 (1961). doi: 10.1103/PhysRev.124.925 zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. Knop, R.K., et al.: Astrophys. J. 598, 102 (2003). doi: 10.1086/378560 CrossRefADSGoogle Scholar
  6. Panigrahi, U.K., Sahu, R.C.: Theor. Appl. Mech. 30, 163–175 (2003a) MathSciNetCrossRefGoogle Scholar
  7. Panigrahi, U.K., Sahu, R.C.: Bull. Cal. Math. Soc. 95, 183 (2003b) zbMATHMathSciNetGoogle Scholar
  8. Panigrahi, U.K., Sahu, R.C.: Czech. J. Phys. 54(5), 543 (2004). doi: 10.1023/B:CJOP.0000024957.99564.97 CrossRefADSGoogle Scholar
  9. Pradhan, A., Vishwakarma, A.K.: Int. J. Mod. Phys. D 11, 1195 (2002). doi: 10.1142/S0218271802002207 zbMATHADSMathSciNetGoogle Scholar
  10. Pradhan, A., et al.: Braz. J. Phys. 36(4A), 1227 (2006) CrossRefGoogle Scholar
  11. Ray Choudhari, A.K.: Phys. Rev. 98, 1123 (1955). doi: 10.1103/PhysRev.98.1123 CrossRefADSMathSciNetGoogle Scholar
  12. Riess, et al.: Astrophys. J. 607, 665 (2004). doi: 10.1086/383612 CrossRefADSGoogle Scholar
  13. Singh, T.: Astrophys. Space Sci. 102, 67 (1984). doi: 10.1007/BF00651062 CrossRefADSGoogle Scholar
  14. Singh, C.P., Kumar, S.: Astrophys. Space Sci. 310, 31–39 (2007). doi: 10.1007/s10509-007-9411-1 CrossRefADSGoogle Scholar
  15. Singh, C.P., et al.: Astrophys. Space Sci. 314, 145–150 (2008). doi: 10.1007/s10509-008-9750-6 CrossRefADSGoogle Scholar
  16. Soleng, H.H.: Astrophys. Space Sci. 137, 373 (1987a). doi: 10.1007/BF00640002 zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. Soleng, H.H.: Astrophys. Space Sci. 139, 13–19 (1987b). doi: 10.1007/BF00643809 CrossRefADSMathSciNetGoogle Scholar
  18. Taub, A.H.: Phys. Rev. 103(2), 454 (1956). doi: 10.1103/PhysRev.103.454 zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. Venkateshwarlu, R., Reddy, D.R.K.: Astrophys. Space Sci. 150, 379 (1998). doi: 10.1007/BF00641731 CrossRefADSGoogle Scholar
  20. Vishwakarma, R.G., Narlikar, J.V.: Int. J. Mod. Phys. D 14, 345 (2005). doi: 10.1142/S0218271805006547 zbMATHADSGoogle Scholar
  21. Zel’dovich, Y.B.: Sov. Phys. JETP 14, 1143 (1962) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.PG Department of MathematicsRajasthan Aryan MahavidyalayaWashimIndia
  2. 2.Department of MathematicsY.C. Science and Arts CollegeMangrulpirIndia

Personalised recommendations