Skip to main content
Log in

The empirical mass-luminosity relation for low mass stars

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

This work is devoted to improving empirical mass-luminosity relations (MLR) and mass-metallicity-luminosity relation (MMLR) for low mass stars. For these stars, observational data in the mass-luminosity plane or the mass-metallicity-luminosity space subject to non-negligible errors in all coordinates with different dimensions. Thus a reasonable weight assigning scheme is needed for obtaining more reliable results. Such a scheme is developed, with which each data point can have its own due contribution. Previous studies have shown that there exists a plateau feature in the MLR. Taking into account the constraints from the observational luminosity function, we find by fitting the observational data using our weight assigning scheme that the plateau spans from 0.28M to 0.50M. Three-piecewise continuous improved MLRs in K, J, H and V bands, respectively, are obtained. The visual MMLR is also improved based on our K band MLR and the available observational metallicity data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso, A., Arribas, S., Martinez-Roger, C.: Astron. Astrophys. Suppl. Ser. 107, 365 (1994)

    ADS  Google Scholar 

  • Bevington, P.R., Robinson, D.K.: Data reduction and error analysis for the physical sciences, 2nd edn. McGraw-Hill, New York (1992)

    Google Scholar 

  • Bonfils, X., Delfosse, X., Udry, S., Santos, N.C., Forveille, T., Ségransan, D.: Astron. Astrophys. 442, 635 (2005)

    Article  ADS  Google Scholar 

  • Cester, B., Ferluga, S., Boehm, C.: Astrophys. Space Sci. 96, 125 (1983)

    Article  ADS  Google Scholar 

  • Copeland, H., Jensen, J.O., Jorgensen, H.E.: Astron. Astrophys. 5, 12 (1970)

    ADS  Google Scholar 

  • D’Antona, F.: ASP. Conf. Ser., vol. 142, p. 157 (1998)

  • D’Antona, F., Mazzitelli, I.: Astron. Astrophys. 127, 149 (1983)

    ADS  Google Scholar 

  • Delfosse, X., Forveille, T., Ségransan, D., Beuzit, J.-L., Udry, S., Perrier, C., Mayor, M.: Astron. Astrophys. 364, 217 (2000)

    ADS  Google Scholar 

  • Demircan, O., Kahraman, G.: Astrophys. Space Sci. 181, 313 (1991)

    Article  ADS  Google Scholar 

  • Gould, A., Bahcall, J.N., Flynn, C.: Astrophys. J. 465, 759 (1996)

    Article  ADS  Google Scholar 

  • Grossman, A.S., Hays, D., Graboske, H.C. Jr.: Astron. Astrophys. 30, 95 (1974)

    ADS  Google Scholar 

  • Henry, T.J.: In: Rebolo, R., Martin, E.L., Zapatero Osorio, M.R. (eds.) Brown Dwarfs and Extrasolar Planets. ASP Conf. Ser., vol. 134, p. 28 (1998)

  • Henry, T.J.: In: Hilditch, R.W., Hensberge, H., Pavlovski, K. (eds.) The Mass-Luminosity Relation from End to End. ASP Conf. Ser., vol. 318, p. 159 (2004)

  • Henry, T.J., McCarthy, D.W. Jr.: Astron. J. 106, 773 (1993)

    Article  ADS  Google Scholar 

  • Henry, T.J., et al.: Astrophys. J. 512, 864 (1999)

    Article  ADS  Google Scholar 

  • Hertzsprung, E.: Bull. Astron. Inst. Netherlands 2, 15 (1923)

    ADS  Google Scholar 

  • Laughlin, G., Bodenheimer, P., Adams, F.: Astrophys. J. 482, 420 (1997)

    Article  ADS  Google Scholar 

  • Lucy, L.B., Sweeney, M.A.: Astron. J. 76, 544 (1971)

    Article  ADS  Google Scholar 

  • Pourbaix, D.: Astron. Astrophys. Suppl. Ser. 145, 215 (2000)

    Article  ADS  Google Scholar 

  • Pourbaix, D., Boffin, H.M.: Astron. Astrophys. 398, 1163 (2003)

    Article  ADS  Google Scholar 

  • Pourbaix, D., Jorissen, A.: Astron. Astrophys. Suppl. Ser. 145, 161 (2000)

    Article  ADS  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran, 2nd edn., p. 660. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  • Reid, I.N., Gizis, J.E., Hawley, S.L.: Astron. J. 124, 2721 (2002)

    Article  ADS  Google Scholar 

  • Russell, H.N., Adams, W.S., Joy, A.H.: Publ. Astron. Soc. Pac. 35, 189 (1923)

    Article  ADS  Google Scholar 

  • Scalo, J.M.: Fundam. Cosm. Phys. 11, 1 (1986)

    ADS  Google Scholar 

  • Söderhjelm, S.: Astron. Astrophys. 341, 121 (1999)

    ADS  Google Scholar 

  • Wielen, R., Jahreiss, H., Krüger, R.: In: Philip, A.G.D., Upgren, A.R. (eds.) The Nearby Stars and the Stellar Luminosity Function. IAU Colloq., vol. 76, p. 163 (1983)

  • Woitas, J., Leinert, Ch., Jahreiß, H., Henry, T., Franz, O.G., Wasserman, L.H.: Astron. Astrophys. 353, 253 (2000)

    ADS  Google Scholar 

  • Woitas, J., Tamazian, V.S., Docobo, J.A., Leinert, Ch.: Astron. Astrophys. 406, 293 (2003)

    Article  ADS  Google Scholar 

  • Woolf, V.M., Wallerstein, G.: Publ. Astron. Soc. Pac. 118, 218 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, F., Ren, S. & Fu, Y. The empirical mass-luminosity relation for low mass stars. Astrophys Space Sci 314, 51–58 (2008). https://doi.org/10.1007/s10509-007-9729-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-007-9729-8

Keywords

Navigation