Skip to main content
Log in

The Toulouse–Geneva Evolution Code (TGEC)

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

In the framework of the CoRoT-ESTA, we present the Toulouse–Geneva Evolution Code (TGEC) at its present stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelberger, E.G., Austin, S.M., Bahcall, J.N., Balantekin, A.B., Bogaert, G., Brown, L.S., Buchmann, L., Cecil, F.E., Champagne, A.E., de Braeckeleer, L., et al.: Solar fusion cross sections. Rev. Mod. Phys. 70(4), 1265–1291 (1998)

    Article  ADS  Google Scholar 

  • Alexander, D.R., Ferguson, J.W.: Low-temperature Rosseland opacities. Astrophys. J. 437, 879–891 (1994)

    Article  ADS  Google Scholar 

  • Angulo, C., et al.: A compilation of charged-particle induced thermonuclear rates. Nucl. Phys. A 656, 3–187 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  • Asplund, M., Grevesse, N., Sauval, A.J.: In: Barnes III, T.G., Bash, F.N. (eds.) Proceedings of a symposium held 17–19 June, 2004 in Austin, Texas. Cosmic abundances as records of stellar evolution and nucleosynthesis, in honor of David L. Lambert. ASP Conference Series, vol. 336, p. 25. Astronomical Society of the Pacific, San Francisco (2005)

    Google Scholar 

  • Bahcall, J.N., Pinsonneault, M.H.: Standard solar models, with and without helium diffusion, and the solar neutrino problem. Rev. Mod. Phys. 64(4), 885–926 (1992)

    Article  ADS  Google Scholar 

  • Bazot, M., Vauclair, S.: Asteroseismology of exoplanets hosts stars: tests of internal metallicity. Astron. Astrophys. 427, 965–973 (2004)

    Article  ADS  Google Scholar 

  • Böhm-Vitense, E.: Über die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte. Z. Astrophys. 46, 108–143 (1958)

    ADS  Google Scholar 

  • Canuto, V.M., Goldman, I., Mazzitelli, I.: Stellar turbulent convection: a self-consistent model. Astrophys. J. 473, 550–559 (1996)

    Article  ADS  Google Scholar 

  • Canuto, V.M., Mazzitelli, I.: Stellar turbulent convection—a new model and applications. Astrophys. J. 370, 295–311 (1991)

    Article  ADS  Google Scholar 

  • Castro, M., Vauclair, S., Richard, O.: Low abundances of heavy elements in the solar outer layers: comparisons of solar models with helioseismic inversions. Astron. Astrophys. 463, 755–758 (2007)

    Article  ADS  Google Scholar 

  • Caughlan, G.R., Fowler, W.A.: Thermonuclear reaction rates V. At. Data Nucl. Data Tables 40, 283 (1988)

    Article  ADS  Google Scholar 

  • Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases, 3rd edn. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  • Charbonnel, C., Vauclair, S., Zahn, J.-P.: Rotation-induced mixing and lithium depletion in galactic clusters. Astron. Astrophys. 255, 191–199 (1992)

    ADS  Google Scholar 

  • Däppen, W., Mihalas, D., Hummer, D.G., Mihalas, B.W.: The equation of state for stellar envelopes. III—Thermodynamic quantities. Astrophys. J. 332, 261–270 (1988)

    Article  ADS  Google Scholar 

  • Grevesse, N., Noels, A.: Cosmic abundances of the elements. In: Prantzos, N., Vangioni-Flam, E., Casse, M. (eds.) Origin and Evolution of the Elements. Proceedings of a Symposium in Honour of H. Reeves, Paris, 22–25 June, 1992, p. 14. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  • Hummer, D.G., Mihalas, D.: The equation of state for stellar envelopes. I—An occupation probability formalism for the truncation of internal partition functions. Astrophys. J. 331, 794–814 (1988)

    Article  ADS  Google Scholar 

  • Iglesias, C.A., Rogers, F.J.: Updated OPAL opacities. Astrophys. J. 464, 943–953 (1996)

    Article  ADS  Google Scholar 

  • Izotov, Y.I., Thuan, T.X.: Systematic effects and a new determination of the primordial abundance of 4He and dY/dZ from observations of blue compact galaxies. Astrophys. J. 602, 200–230 (2004)

    Article  ADS  Google Scholar 

  • LeBlanc, F., Alecian, G.: New method for fast and easy computation of radiative accelerations in stars. Mon. Not. R. Astron. Soc. 352, 1329–1334 (2004)

    Article  ADS  Google Scholar 

  • Maeder, A.: Evolution of chemical abundances in massive stars. I—OB stars, Hubble–Sandage variables and Wolf–Rayet stars—changes at stellar surfaces and galactic enrichment by stellar winds. Astron. Astrophys. 120, 113–129 (1983)

    ADS  Google Scholar 

  • Maeder, A., Meynet, G.: Grids of evolutionary models from 0.85 to 120 solar masses—observational tests and the mass limits. Astron. Astrophys. 210, 155–173 (1989)

    ADS  Google Scholar 

  • Maeder, A., Zahn, J.-P.: Stellar evolution with rotation. III. Meridional circulation with μ-gradients and non-stationarity. Astron. Astrophys. 334, 1000–1006 (1998)

    ADS  Google Scholar 

  • Mihalas, D., Dappen, W., Hummer, D.G.: The equation of state for stellar envelopes. II—Algorithm and selected results. Astrophys. J. 331, 815–825 (1988)

    Article  ADS  Google Scholar 

  • Montmerle, T., Michaud, G.: Diffusion in stars—ionization and abundance effects. Astron. Astrophys. 31, 489–515 (1976)

    ADS  Google Scholar 

  • Paquette, C., Pelletier, C., Fontaine, G., Michaud, G.: Diffusion coefficients for stellar plasmas. Astrophys. J. Suppl. Ser. 61, 177–195 (1986)

    Article  ADS  Google Scholar 

  • Richard, O., Théado, S., Vauclair, S.: Updated Toulouse solar models including the diffusion-circulation coupling and the effect of μ-gradients. Sol. Phys. 220, 243–259 (2004)

    Article  ADS  Google Scholar 

  • Rogers, F.J., Nayfonov, A.: Updated and expanded OPAL equation-of-state tables: implications for helioseismology. Astrophys. J. 576, 1064–1074 (2002)

    Article  ADS  Google Scholar 

  • Salpeter, E.E.: Aust. J. Phys. 7, 373 (1954)

    MATH  ADS  Google Scholar 

  • Schatzman, E., Maeder, A., Angrand, F., Glowinski, R.: Stellar evolution with turbulent diffusion mixing. III—The solar model and the neutrino problem. Astron. Astrophys. 96, 1–16 (1981)

    ADS  Google Scholar 

  • Schwarzschild, K.: Nachr. Ges. Wiss. Gött., No. 1 (1906)

  • Skumanich, A.: Time scales for Ca II emission decay, rotational braking, and lithium depletion. Astrophys. J. 171, 565–567 (1972)

    Article  ADS  Google Scholar 

  • Théado, S., Vauclair, S.: On the coupling between helium settling and rotation-induced mixing in stellar radiative zones. II. Numerical approach. Astrophys. J. 587, 784–794 (2003a)

    Article  ADS  Google Scholar 

  • Théado, S., Vauclair, S.: On the coupling between helium settling and rotation-induced mixing in stellar radiative zones. III. Applications to light elements in population I main-sequence stars. Astrophys. J. 587, 795–805 (2003b)

    Article  ADS  Google Scholar 

  • Théado, S., Vauclair, S., Cunha, M.S.: Helium settling and mass loss in magnetic Ap stars. I. The chemical stratification. Astron. Astrophys. 443, 627–641 (2005)

    Article  ADS  Google Scholar 

  • Vauclair, S., Théado, S.: On the coupling between helium settling and rotation-induced mixing in stellar radiative zones. I. Analytical approach. Astrophys. J. 587, 777–783 (2003)

    Article  ADS  Google Scholar 

  • Zahn, J.-P.: Circulation and turbulence in rotating stars. Astron. Astrophys. 265, 115–132 (1992)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Hui-Bon-Hoa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hui-Bon-Hoa, A. The Toulouse–Geneva Evolution Code (TGEC). Astrophys Space Sci 316, 55–60 (2008). https://doi.org/10.1007/s10509-007-9605-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-007-9605-6

Keywords

Navigation