Twist transport in strongly torsioned astrophysical flux tubes


Riemannian geometrical effects on the expansion of the electron magnetohydrodynamical (EMH) superconductivity modeled twisted nonplanar thin magnetic flux tubes are considered. A solution is found which represents almost incompressible plasma flows, where the twist of flux tube is computed in terms of the continuous variation of its cross-section. It is shown that the twist increases in regions where twisted flux tube expands as in Parker’s conjecture. From computation of compression along the tube we show that when the torsion is weak a centrifugal or vorticity effect on the longitudinal direction of the tube enhances the screening effect on the “superconductor”. Throughout the paper we consider helical flux tubes where torsion and curvature of the tube are constants. Thus we show that the Parker’s conjecture is valid in a continuos manner for these type II superconducting twisted flux tubes. Throughout the paper we adopt the approximation that the radial component of the magnetic field varies so slowly along the tube axis that it can be approximated to zero along the tube. It is suggested that the models discussed here may also be applied to DNA and nanotubes.

This is a preview of subscription content, access via your institution.


  1. Chai, et al.: J. Korean Astron. Soc. 38, 33 (2003)

    Google Scholar 

  2. D’Hasseleer, W.D., Hitchon, W.H., Callen, J.D., Sholet, J.L.: Flux Coordinates and Magnetic Field Structure: A Guide to a Fundamental Tool of Plasma Theory. Springer, Berlin (1991)

    Google Scholar 

  3. Garcia de Andrade, L.C.: Non-Riemannian vortex acoustics. Phys. Rev. D 70, 064004 (2004)

    Article  ADS  Google Scholar 

  4. Garcia de Andrade, L.C.: Riemannian geometry of twisted magnetic flux tubes and almost helical flows. Phys. Plasmas 13, 022309 (2006a)

    Article  MathSciNet  Google Scholar 

  5. Garcia de Andrade, L.C.: Curvature and torsion effects in electric current-carrying twisted solar loops. Phys. Plasmas 13, 112903 (2006b)

    Article  MathSciNet  Google Scholar 

  6. Jockers, K.: Astrophys. J. 220, 1133 (1978)

    Article  ADS  Google Scholar 

  7. Lopez-Fuentes, M.C., Demoulin, P., Mandrini, C.H., Pevtsov, A., van Driel-Gesztelyi, L.: Astron. Astrophys. 397, 305 (2003)

    Article  ADS  Google Scholar 

  8. Parker, E.N.: Astrophys. J. 191, 245 (1974)

    Article  ADS  Google Scholar 

  9. Ricca, R.: Phys. Rev. A 43(8), 4281 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  10. Ricca, R.L.: Inflexional disequilibrium of twisted magnetic flux-tubes. Fluid Dyn. Res. J. 36(4–6), 319 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  11. Ruderman, M.: Pulsar spin, magnetic fields and Glitches, astro-ph/0610375 (2006)

  12. Ruytova, M.: Waves and oscillations in magnetic flux tubes. In: Stenflo, J. (ed.) Solar Photosphere: Structure, Convection, and Magnetic Fields. IAU Symposium, vol. 138, p. 229. Kluwer, Dordrecht (1990)

    Google Scholar 

  13. Uby, L., Isichenko, M., Yankov, V.: Phys. Rev. E 52, 000932 (1995)

    Article  ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to L. C. Garcia de Andrade.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Garcia de Andrade, L.C. Twist transport in strongly torsioned astrophysical flux tubes. Astrophys Space Sci 310, 25–29 (2007).

Download citation


  • Vorticity
  • Flux Tube
  • Toroidal Component
  • Sausage Mode
  • Frenet Curvature