Astrophysics and Space Science

, Volume 308, Issue 1–4, pp 335–343 | Cite as

The example of effective plasma acceleration in a magnetosphere

  • V. S. BeskinEmail author
  • E. E. Nokhrina
Original Article


The problem of effective transform of Poynting flux energy into the kinetic energy of relativistic plasma outflow in a magnetosphere is considered. In this article we present an example of such acceleration. In order to perform it, we use the approach of ideal axisymmetric magnetohydrodynamics (MHD). For highly magnetized plasma outflow we show that a linear growth of Lorentz factor with a cylindrical distance from the rotational axis is a general result for any field configuration in the sub-magnetosonic flow. In the far region the full magnetohydrodynamics problem for one-dimensional flow is considered. It turns out that the effective plasma outflow acceleration is possible in the paraboloidal magnetic field. It is shown that such an acceleration is due to the drift of charged particles in the crossed electric and magnetic field. The clear explanation of the absence of acceleration in the monopole magnetic field if given.


Neutron stars Magnetosphere Plasma acceleration MHD and plasmas 


94.30.-d 94.20.wc 95.30.Qd 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Begelman, M.C., Li, Zh.-Yu.: Astrophys. J. 426, 269 (1994) CrossRefADSGoogle Scholar
  2. Beskin, V.S., Gurevich, A.V., Istomin, Ya.N.: Physics of the Pulsar Magnetosphere. Cambridge University Press, Cambridge (1993) zbMATHGoogle Scholar
  3. Beskin, V.S., Phys. Uspekhi 40, 659 (1997) CrossRefGoogle Scholar
  4. Beskin, V.S., Kuznetsova, I.V., Rafikov, R.R.: Mon. Not. Roy. Astron. Soc. 299, 341 (1998) CrossRefADSGoogle Scholar
  5. Beskin, V.S., Malyshkin, L.M.: Astron. Lett. 26, 208 (2000) CrossRefADSGoogle Scholar
  6. Beskin, V.S., Rafikov, R.R.: Mon. Not. Roy. Astron. Soc. 313, 433 (2000) CrossRefADSGoogle Scholar
  7. Beskin, V.S., Nokhrina, E.E.: Mon. Not. Roy. Astron. Soc. 367, 375 (2006) CrossRefADSGoogle Scholar
  8. Blandford, R.D.: Mon. Not. Roy. Astron. Soc. 176, 465 (1976) ADSGoogle Scholar
  9. Bogovalov, S.V.: Astron. Lett. 21, 565 (1995) ADSGoogle Scholar
  10. Bogovalov, S.V.: Astron. Astrophys. 327, 662 (1997) ADSGoogle Scholar
  11. Camenzind, M.: Astron. Astrophys. 162, 32 (1986) zbMATHADSGoogle Scholar
  12. Chiueh, T., Li, Zh.-Yu., Begelman, M.C.: Astrophys. J. 377, 462 (1991) CrossRefADSGoogle Scholar
  13. Chiueh, T., Li, Zh.-Yu., Begelman, M.C.: Astrophys. J. 505, 835 (1998) CrossRefADSGoogle Scholar
  14. Coroniti, V.F.: Astrophys. J. 349, 538 (1990) CrossRefADSGoogle Scholar
  15. Eichler, D.: Astrophys. J. 419, 111 (1993) CrossRefADSGoogle Scholar
  16. Kennel, C.F., Coroniti, F.V.: Astrophys. J. 283, 694 (1984) CrossRefADSGoogle Scholar
  17. Kirk, J.G., Lyubarsky, Y.: J. Astron. Soc. Aust. 18, 415 (2001) CrossRefADSGoogle Scholar
  18. Komissarov, S.S.: Mon. Not. Roy. Astron. Soc. 350, 1431 (2004) CrossRefADSGoogle Scholar
  19. Lee, H.K., Park, J.: Phys. Rev. D 70, 063001 (2004) CrossRefADSGoogle Scholar
  20. Lyubarsky, Y., Kirk, J.G.: Astrophys. J. 547, 437 (2001) CrossRefADSGoogle Scholar
  21. Michel, F.C.: Astrophys. J. 158, 727 (1969) CrossRefADSGoogle Scholar
  22. Michel, F.: Theory of Neutron Star Magnetosphere. The University of Chicago Press, Chicago (1991) Google Scholar
  23. Spitkovsky, A., Arons, J.: Astrophys. J. 603, 669 (2004) CrossRefADSGoogle Scholar
  24. Thomson, T.A., Chang, P., Quataert, E.: Astrophys. J. 611, 380 (2004) CrossRefADSGoogle Scholar
  25. Vlahakis, N., Königl, A.: Astrophys. J. 596, 1080 (2003) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.P.N. Lebedev Physical Institute, RASMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations