Skip to main content
Log in

Laboratory Simulations of Supernova Shockwave Propagation

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Supernovae launch spherical shocks into the circumstellar medium (CSM). These shocks have high Mach numbers and may be radiative. We have created similar shocks in the laboratory by focusing laser pulses onto the tip of a solid pin surrounded by ambient gas; ablated material from the pin rapidly expands and launches a shock through the surrounding gas. Laser pulses were typically 5 ns in duration with ablative energies ranging from 1–150 J. Shocks in ambient gas pressures of ~1 kPa were observed at spatial scales of up to 5 cm using optical cameras with schlieren. Emission spectroscopy data were obtained to infer electron temperatures (< 10 eV).

In this experiment we have observed a new phenomena; at the edge of the radiatively heated gas ahead of the shock, a second shock forms. The two expanding shocks are simultaneously visible for a time, until the original shock stalls from running into the heated gas. The second shock remains visible and continues to expand. A minimum condition for the formation of the second shock is that the original shock is super-critical, i.e., the temperature distribution ahead of the original shock has an inflexion point. In a non-radiative control experiment the second shock does not form. We hypothesize that a second shock could form in the astrophysical case, possibly in radiative supernova remnants such as SN1993J, or in shock-CSM interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Müller, E., Fryxell, B. and Arnett, D.: 1991, A&A 251, 505.

    Google Scholar 

  • Reed, J.I., Hester, J.J., Fabian, A.C. and Winkler, P.F.: 1995, ApJ 440, 706.

    Article  Google Scholar 

  • Sonneborn, G., Pun, C.S.J., Kimble, R.A., Gull, T.R., Lundqvist, P., McCray, R., Plait, P., Boggess, A., Bowers, C.W., Danks, A.C. et al.: 1998, ApJ Lett. 492, L139.

    Article  Google Scholar 

  • Remington, B.A., Arnett, D., Drake, R.P. and Takabe, H.: 1999, Science 284, 1488.

    Article  Google Scholar 

  • Bartel, N., Bietenholz, M.F., Rupen, M.P., Beasley, A.J., Graham, D.A., Altunin, V.I., Venturi, T., Umana, G., Cannon, W.H. and Conway, J.E.: 2000, Science 287, 112.

    Article  PubMed  Google Scholar 

  • McKee, C.F. and Draine, B.T.: 1991, Science 252, 397.

    Google Scholar 

  • Allen, D.A. and Burton, M.G.: 1993, Nature 363, 54.

    Article  Google Scholar 

  • Klein, R.I. and Woods, D.T.: 1998, ApJ 497, 777.

    Article  Google Scholar 

  • Blondin, J.M., Wright, E.B., Borkowski, K.J. and Reynolds, S.P.: 1998, ApJ 500, 342.

    Article  Google Scholar 

  • Bozier, J.C., Thiell, G., LeBreton, J.P., Azra, S., Decroisette, M. and Schirmann, D.: 1986, Phys. Rev. Lett. 57, 1304.

    Article  PubMed  Google Scholar 

  • Grun, J., Stamper, J., Manka, C., Resnick, J., Burris, R., Crawford, J. and Ripin, B.H.: 1991, Phys. Rev. Lett. 66, 2738.

    Article  PubMed  Google Scholar 

  • Ryutov, D., Drake, R.P., Kane, J., Liang, E., Remington, B.A. and Wood-Vasey, W.M.: 1999, ApJ 518, 821.

    Article  Google Scholar 

  • Shigemori, K., Ditmire, T., Remington, B.A., Yanovksy, V., Ryutov, D., Estabrook, K.G., Edwards, M.J., MacKinnon, A.J., Rubenchik, A.M., Keilty, K.A. and Liang, E.: 2000, ApJ 533, 159.

    Article  Google Scholar 

  • Robey, H.F., Kane, J.O., Remington, B.A., Drake, R.P., Hurricane, O.A., Louis, H., Wallace, R.J., Knauer, J., Keiter, P., Arnett, D. and Ryutov, D.D.: 2001, Phys. Plasmas 8, 2446.

    Article  Google Scholar 

  • Fleury, X., Bouquet, S., Stehle, C., Koenig, M., Batani, D., Benuzzi-Mounaix, A., Chieze, J.-P., Grandjouan, N., Grenier, J., Hall, T. et al.: 2002, Laser Part. Beams 20, 263.

    Article  Google Scholar 

  • Keiter, P.A., Drake, R.P., Perry, T.S., Robey, H.F., Remington, B.A., Iglesias, C.A., Wallace, R.J. and Knauer, J.: 2002, Phys. Rev. Lett. 89, 165003.

    Article  PubMed  Google Scholar 

  • Taylor, G.I.: 1950, Proc. R. Soc. London A 201, 159.

    Google Scholar 

  • Sedov, L.I.: 1959, Similarity and Dimensional Methods in Mechanics, Academic Press, New York.

    Google Scholar 

  • Zeldovich, Y.B. and Raizer, Y.P.: 1966, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press, New York.

    Google Scholar 

  • McKee, C.F. and Ostriker, J.P.: 1977, ApJ 218, 148.

    Article  Google Scholar 

  • Zimmerman, G.B. and Kruer, W.L.: 1975, Comments Plasma Phys. Controlled Fusion 2, 51.

    Google Scholar 

  • Mihalas, D. and Mihalas, B.W.: 1984, Foundations of Radiation Hydrodynamics, Oxford University Press, Oxford.

    Google Scholar 

  • Barenblatt, G.I.: 1979, Similarity, Self-Similarity and Intermediate Asymptotics, Consultants Bureau, New York.

    Google Scholar 

  • Reinicke, P. and Meyer-ter-Vehn, J.: 1991, Phys. Fluids A 3, 1807.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Hansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, J.F., Edwards, M.J., Froula, D. et al. Laboratory Simulations of Supernova Shockwave Propagation. Astrophys Space Sci 298, 61–67 (2005). https://doi.org/10.1007/s10509-005-3912-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-005-3912-6

Keywords

Navigation