On the Content of “Real-World” Sexual Fantasy: Results From an Analysis of 250,000+ Anonymous Text-Based Erotic Fantasies

Abstract

A recurring problem with the study of sexual fantasy is that of social desirability bias. Study participants may report fantasies that are consistent with general societal expectations of fantasy content, as opposed to themes characterized by their actual fantasies. The wide availability of erotic material on the Internet, however, facilitates the study of sexual fantasy narratives as they are anonymously expressed and viewed online. By extracting approximately 250,000 text-based erotic fantasies from a user-generated website, we sought to examine “real-world” sexual fantasies, determine the themes that were typical of these narratives, and explore the relationship between themes and story popularity (as assessed by story views per day). A principal components analysis identified 20 themes that commonly occurred across the massive corpus, and a path analysis revealed that these themes played a significant role in predicting the popularity of the sexual fantasy narratives. In particular, the empirically identified themes reflecting familial words (e.g., mother, father) and colloquial sexual words (e.g., cock, fuck) were predictive of story popularity. Other themes identified included those not obviously erotic, such as those consisting of words reflecting domesticity (e.g., towel, shower) and colors (e.g., brown, blue). By analyzing a sexual fantasy corpus of unprecedented size, this study offers unique insight into both the content of sexual fantasies and the popularity of that content.

This is a preview of subscription content, log in to check access.

References

  1. Ahlers, C. J., Shaefer, G. A., Mundt, I. A., Roll, S., Englert, H., Willich, S. N., & Beier, K. M. (2011). How unusual are the content of paraphilias? Paraphilia-associated sexual arousal patterns in a community-based sample of men. Journal of Sexual Medicine, 8(5), 1362–1370.

    Article  Google Scholar 

  2. Bargh, J. A., McKenna, K. Y. A., & Fitzsimons, G. M. (2002). Can you see the real me? Activation and expression of the “true self” on the Internet. Journal of Social Issues, 58(1), 33–48.

    Article  Google Scholar 

  3. Benoint, K., Watanabe, K., Nulty, P., Obeng, A., Wang, H., Lauderdale, B., & Lowe, W. (2017). quanteda: Quantitative analysis of textual data. R Package version: 0.9.9-65.

  4. Bivona, J., & Critelli, J. (2009). The nature of women’s rape fantasies: An analysis of prevalence, frequency, and contents. Journal of Sex Research, 46(1), 33–45.

    Article  Google Scholar 

  5. Boyd, R. L. (2014). MEH: Meaning extraction helper (version 1.4.15) [Software]. https://meh.ryanb.cc.

  6. Boyd, R. L., Wilson, S. R., Pennebaker, J. W., Kosinski, M., Stillwell, D. J., & Mihalcea, R. (2015). Values in words: Using language to evaluate and understand personal values. In D. Quercia (Ed.), Proceedings of the ninth international AAAI conference on web and social media (pp. 31–40). Palo Alto, California: The AAAI Press.

  7. Briere, J., & Runtz, M. (1989). University males’ sexual interest in children: Predicting potential indices of “pedophilia” in a nonforensic sample. Child Abuse and Neglect, 13(1), 65–75.

    Article  Google Scholar 

  8. Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York, NY: Guilford Publications.

    Google Scholar 

  9. Burnham, K. P., & Anderson, D. R. (1998). Information theory and log-likelihood models: A basis for model selection and inference. In Model selection and inference (pp. 32–74). New York, NY: Springer.

  10. Chung, C. K., & Pennebaker, J. W. (2008). Revealing dimensions of thinking in open-ended self-descriptions: An automated meaning extraction method for natural language. Journal of Research in Personality, 42(1), 96–132.

    Article  Google Scholar 

  11. Dodou, D., & de Winter, J. C. (2014). Social desirability is the same in offline, online, and paper surveys: A meta-analysis. Computers in Human Behavior, 36, 487–495.

    Article  Google Scholar 

  12. Dombert, B., Schmidt, A. F., Banse, R., Briken, P., Hoyer, J., Neutze, J., & Osterheider, M. (2016). How common is men’s self-reported sexual interest in prepubescent children? Journal of Sex Research, 53(2), 214–223.

    Article  Google Scholar 

  13. Ellis, B. J., & Symons, D. (1990). Sex differences in sexual fantasy: An evolutionary psychological approach. Journal of Sex Research, 27(4), 527–555.

    Article  Google Scholar 

  14. Field, A. (2009). Discovering statistics using SPSS. Thousand Oaks, CA: Sage Publications.

    Google Scholar 

  15. Frohmuth, M. E., Burkhart, B. R., & Jones, C. W. (1991). Hidden child molestation: An investigation of adolescent perpetrators in a nonclinical sample. Journal of Interpersonal Violence, 6(3), 376–384.

    Article  Google Scholar 

  16. Gilden, A. (2016). Punishing sexual fantasy. William & Mary Law Review, 58, 419–491.

    Google Scholar 

  17. Gold, S. R., Balzano, B. F., & Stamey, R. (1991). Two studies of females’ sexual force fantasies. Journal of Sex Education and Therapy, 17(1), 15–26.

    Article  Google Scholar 

  18. Greaney, D. (Writer) & Afflek, N. (Director). (1998). This little Wiggy [Television series episode]. In M. Groening (Ed.), The Simpsons. Los Angeles: Gracie Films.

  19. Handy, A. B., Wassersug, R. J., Ketter, J. T., & Johnson, T. W. (2015). The sexual side of castration narratives: Fiction written by and for eunuchs and eunuch “wannabes”. Canadian Journal of Human Sexuality, 24(2), 151–159.

    Article  Google Scholar 

  20. Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179–185.

    Article  Google Scholar 

  21. Hornik, K., Mair, P., Rauch, J., Geiger, W., Buchta, C., & Feinerer, I. (2013). The textcat package for n-gram based text categorization in R. Journal of Statistical Software, 52(6), 1–17.

    Article  Google Scholar 

  22. Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55.

    Article  Google Scholar 

  23. Joinson, A. N. (2001). Self-disclosure in computer-mediated communication: The role of self-awareness and visual anonymity. European Journal of Social Psychology, 31(2), 177–192.

    Article  Google Scholar 

  24. Joyal, C. C., & Carpentier, J. (2017). The prevalence of paraphilic interests and behaviors in the general population: A provincial survey. Journal of Sex Research, 54(2), 161–171.

    Article  Google Scholar 

  25. Joyal, C. C., Cossette, A., & Lapierre, V. (2015). What exactly is an unusual sexual fantasy? Journal of Sexual Medicine, 12(2), 328–340.

    Article  Google Scholar 

  26. Kincaid, J., Fishburne Jr., R., Rogers, R. L., & Chissom, B. S. (1975). Derivation of new readability formulas (auomated readability index, fog count, and flesch reading ease formula) for Navy enlisted personnel (No. RBR-8-75). Naval Technical Training Command Millington TN Research Branch.

  27. Leitenberg, H., & Henning, K. (1995). Sexual fantasy. Psychological Bulletin, 117(3), 469–496.

    Article  Google Scholar 

  28. Maniglio, R. (2010). The role of deviant sexual fantasy in the etiopathogenesis of sexual homicide: A systematic review. Aggression and Violent Behavior, 15(4), 294–302.

    Article  Google Scholar 

  29. Pornhub’s 2016 Year in Review. (2017). Retrieved September 5, 2017, from https://www.pornhub.com/insights/2016-year-in-review.

  30. R Core Team. (2017). R: A language and environment for statistical computing [Computer software]. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  31. Salton, G., & Smith, M. (1989). On the application of syntactic methodologies in automatic text analysis. ACM SIGIR Forum, 23, 137–150.

    Article  Google Scholar 

  32. Seifert, K., Boulas, J., Huss, M. T., & Scalora, M. J. (2017). Response bias on self-report measures of sexual fantasies among sexual offenders. International Journal of Offender Therapy and Comparative Criminology, 61(3), 269–281.

    Article  Google Scholar 

  33. Stanton, A. M., Boyd, R. L., Pulverman, C. S., & Meston, C. M. (2015). Determining women’s sexual self-schemas through advanced computerized text analysis. Child Abuse and Neglect, 46, 78–88.

    Article  Google Scholar 

  34. Strassberg, D. S., & Lowe, K. (1995). Volunteer bias in sexuality research. Archives of Sexual Behavior, 24(4), 369–382.

    Article  Google Scholar 

  35. Suler, J. (2004). The online disinhibition effect. Cyberpsychology & Behavior, 7(3), 321–326.

    Article  Google Scholar 

  36. Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics. Needham Heights, MA: Allyn & Bacon.

    Google Scholar 

  37. United States v. Curtin, 489 F.3d 935, 958-59 (9th Cir., 2007).

  38. Weisband, S., & Kiesler, S. (1996). Self disclosure on computer forms: Meta-analysis and implications. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 3–10). New York, New York: ACM Publications.

  39. Williams, K. M., Cooper, B. S., Howell, T. M., Yuille, J. C., & Paulhus, D. L. (2009). Inferring sexually deviant behavior from corresponding fantasies: The role of personality and pornography consumption. Criminal Justice and Behavior, 36(2), 198–222.

    Article  Google Scholar 

  40. Wolf, M., Chung, C. K., & Kordy, H. (2010). Inpatient treatment to online aftercare: E-mailing themes as a function of therapeutic outcomes. Psychotherapy Research, 20(1), 71–85.

    Article  Google Scholar 

  41. Woodworth, M., Freimuth, T., Hutton, E. L., Carpenter, T., Agar, A. D., & Logan, M. (2013). High-risk sexual offenders: An examination of sexual fantasy, sexual paraphilia, psychopathy, and offence characteristics. International Journal of Law and Psychiatry, 36(2), 144–156.

    Article  Google Scholar 

  42. Wurtele, S. K., Simons, D., & Moreno, T. (2014). Sexual interest in children among an online sample of men and women: Prevalence and correlates. Sexual Abuse: A Journal of Research and Treatment, 26, 546–568.

    Article  Google Scholar 

  43. Yarkoni, T. (2010). Personality in 100,000 words: A large-scale analysis of personality and word use among bloggers. Journal of Research in Personality, 44(3), 363–373.

    Article  Google Scholar 

  44. Zhang, Y., Chen, W., Wang, D., & Yang, Q. (2011). User-click modeling for understanding and predicting search-behavior. In Proceedings of the 17th ACM SIGKDD International conference on knowledge discovery and data mining-KDD’11, (p. 1388). New York: ACM Publications.

Download references

Funding

This work was supported in part by the Middlebury College Digital Liberal Arts Initiative.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin Seehuus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 55 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seehuus, M., Stanton, A.M. & Handy, A.B. On the Content of “Real-World” Sexual Fantasy: Results From an Analysis of 250,000+ Anonymous Text-Based Erotic Fantasies. Arch Sex Behav 48, 725–737 (2019). https://doi.org/10.1007/s10508-018-1334-0

Download citation

Keywords

  • Sexual fantasy
  • Language
  • Meaning extraction method
  • Text analysis