Skip to main content

Measuring Self-Perceived Effects of Pornography: A Short-Form Version of the Pornography Consumption Effects Scale

Abstract

The Pornography Consumption Effects Scale (PCES) is a 47-item measure of self-perceived effects of pornography use. While the PCES is frequently used in the pornography research literature, its length may limit its applicability in some research situations. This study investigated if a short-form version of the PCES could be created for use with heterosexual men. The study employed an online sample of 312 self-identified heterosexual men. Confirmatory factor analysis was used to produce a 14-item version of the PCES. This short-form PCES (PCES-SF) showed excellent psychometric properties in terms of reliability, concurrent validity with the long-form PCES, and discriminant validity with respect to social desirability. Similar to the full-length PCES, the PCES-SF generates both an overall positive effect score and an overall negative effect score.

This is a preview of subscription content, access via your institution.

Fig. 1

Notes

  1. 1.

    To facilitate model invariance testing (see below), this variable was later dichotomized to “in a relationship/not in a relationship.”

  2. 2.

    To free the factor variances (both of which were fixed to one in the previous analysis), a loading on each factor had to be fixed to one (unit loading identification; Kline, 2011). These loadings were selected on the basis of whichever were the least variant between groups (Sass, 2011).

  3. 3.

    Due to a positive skew in the distribution, Lie Scale total was first square root transformed (Tabachnick & Fiddel, 2013).

  4. 4.

    In Miller et al. (2018), we show that different variables predict PED-SF and NED-SF scores, further indicating their discriminant validity.

References

  1. Barak, A., Fisher, W. A., Belfry, S., & Lashambe, D. R. (1999). Sex, guys, and cyberspace: Effects of internet pornography and individual differences on men’s attitudes toward women. Journal of Psychology & Human Sexuality, 11, 63–91. https://doi.org/10.1300/J056v11n01_04.

    Article  Google Scholar 

  2. Birenbaum, M., & Montag, I. (1989). Style and substance in social desirability scales. European Journal of Personality, 3, 47–59. https://doi.org/10.1002/per.2410030106.

    Article  Google Scholar 

  3. Byrne, B. M., Shavelson, R. J., & Muthén, B. (1989). Testing for the equivalence of factor covariance and mean structures: The issue of partial measurement invariance. Psychological Bulletin, 105, 456–466. https://doi.org/10.1037/0033-2909.105.3.456.

    Article  Google Scholar 

  4. Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9, 233–255. https://doi.org/10.1207/S15328007SEM0902_5.

    Article  Google Scholar 

  5. Deutskens, E., De Ruyter, K., Wetzels, M., & Oosterveld, P. (2004). Response rate and response quality of Internet-based surveys: An experimental study. Marketing Letters, 15, 21–36. https://doi.org/10.1023/b:mark.0000021968.86465.00.

    Article  Google Scholar 

  6. Eisinga, R., te Grotenhuis, M., & Pelzer, B. (2013). The reliability of a two-item scale: Pearson, Cronbach, or Spearman-Brown? International Journal of Public Health, 58, 637–642. https://doi.org/10.1007/s00038-012-0416-3.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ferrando, P. J., & Anguiano-Carrasco, C. (2009). The interpretation of the EPQ Lie scale scores under honest and faking instructions: A multiple-group IRT-based analysis. Personality and Individual Differences, 46, 552–556. https://doi.org/10.1016/j.paid.2008.12.013.

    Article  Google Scholar 

  8. Frable, D. E., Johnson, A. E., & Kellman, H. (1997). Seeing masculine men, sexy women, and gender differences: Exposure to pornography and cognitive constructions of gender. Journal of Personality, 65, 311–355. https://doi.org/10.1111/j.1467-6494.1997.tb00957.x.

    Article  Google Scholar 

  9. Francis, L. J., Brown, L. B., & Pearson, P. R. (1991). The dual nature of the EPQ Lie Scale among university students in Australia. Personality and Individual Differences, 12, 989–991. https://doi.org/10.1016/0191-8869(91)90028-A.

    Article  Google Scholar 

  10. Francis, L. J., Brown, L. B., & Philipchalk, R. (1992). The development of an abbreviated form of the Revised Eysenck Personality Questionnaire (EPQR-A): Its use among students in England, Canada, the USA and Australia. Personality and Individual Differences, 13, 443–449. https://doi.org/10.1016/0191-8869(92)90073-X.

    Article  Google Scholar 

  11. Galesic, M., & Bosnjak, M. (2009). Effects of questionnaire length on participation and indicators of response quality in a web survey. Public Opinion Quarterly, 73, 349–360. https://doi.org/10.1093/poq/nfp031.

    Article  Google Scholar 

  12. Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60, 549–576. https://doi.org/10.1146/annurev.psych.58.110405.085530.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gregorich, S. E. (2006). Do self-report instruments allow meaningful comparisons across diverse population groups? Testing measurement invariance using the confirmatory factor analysis framework. Medical Care, 44, S78–S94. https://doi.org/10.1097/01.mlr.0000245454.12228.8f.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hald, G. M. (2006). Gender differences in pornography consumption among young heterosexual Danish adults. Archives of Sexual Behavior, 35, 577–585. https://doi.org/10.1007/s10508-006-9064-0.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hald, G. M., & Malamuth, N. M. (2008). Self-perceived effects of pornography consumption. Archives of Sexual Behavior, 37, 614–625. https://doi.org/10.1007/s10508-007-9212-1.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hald, G. M., Seaman, C., & Linz, D. (2014). Sexuality and pornography. In D. L. Tolman & L. M. Diamond (Eds.), APA handbook of sexuality and psychology: Vol. 2. Contextual approaches (pp. 3–35). Washington, DC: American Psychological Association. https://doi.org/10.1037/14194-001.

    Chapter  Google Scholar 

  17. Hald, G. M., Smolenski, D., & Rosser, B. R. (2013). Perceived effects of sexually explicit media among men who have sex with men and psychometric properties of the Pornography Consumption Effects Scale (PCES). Journal of Sexual Medicine, 10, 757–767. https://doi.org/10.1111/j.1743-6109.2012.02988.x.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hald, G. M., Træen, B., Noor, S. W., Iantaffi, A., Galos, D., & Rosser, B. S. (2015). Does sexually explicit media (SEM) affect me? Assessing first-person effects of SEM consumption among Norwegian men who have sex with men. Psychology & Sexuality, 6, 59–74. https://doi.org/10.1080/19419899.2014.984516.

    Article  Google Scholar 

  19. Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43, 115–135. https://doi.org/10.1007/s11747-014-0403-8.

    Article  Google Scholar 

  20. Hirschfeld, G., & von Brachel, R. (2014). Multiple-Group confirmatory factor analysis in R: A tutorial in measurement invariance with continuous and ordinal indicators. Practical Assessment, Research & Evaluation, 19(7), 1–12. http://pareonline.net/pdf/v19n7.pdf.

  21. Hoyle, R. H. (2011). Structural equation modeling for social and personality psychology. Thousand Oaks, CA: Sage.

    Book  Google Scholar 

  22. Kline, R. B. (2011). Principles and practices of structural equation modeling (3rd ed.). New York, NY: Guilford.

    Google Scholar 

  23. Kvalem, I. L., Træen, B., Lewin, B., & Štulhofer, A. (2014). Self-perceived effects of Internet pornography use, genital appearance satisfaction, and sexual self-esteem among young Scandinavian adults. Cyberpsychology: Journal of Psychosocial Research on Cyberspace, 8(4), Article 1. https://doi.org/10.5817/CP2014-4-4.

    Article  Google Scholar 

  24. Little, T. D. (1997). Mean and covariance structures (MACS) analyses of cross-cultural data: Practical and theoretical issues. Multivariate Behavioral Research, 32, 53–76. https://doi.org/10.1207/s15327906mbr3201_3.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Miller, D. J., Hald, G. M., & Kidd, G. (2018). Self-perceived effects of pornography consumption among heterosexual men. Psychology of Men & Masculinity, 19, 469–476. https://doi.org/10.1037/men0000112.

    Article  Google Scholar 

  26. Mulya, T. W., & Hald, G. M. (2014). Self-perceived effects of pornography consumption in a sample of Indonesian university students. Media Psychology, 17, 78–101. https://doi.org/10.1080/15213269.2013.850038.

    Article  Google Scholar 

  27. Noor, S. W., Rosser, B. S., & Erickson, D. J. (2014). A brief scale to measure problematic sexually explicit media consumption: Psychometric properties of the Compulsive Pornography Consumption (CPC) scale among men who have sex with men. Sexual Addiction & Compulsivity, 21, 240–261. https://doi.org/10.1080/10720162.2014.938849.

    Article  Google Scholar 

  28. Olinsky, A., Chen, S., & Harlow, L. (2003). The comparative efficacy of imputation methods for missing data in structural equation modeling. European Journal of Operational Research, 151, 53–79. https://doi.org/10.1016/S0377-2217(02)00578-7.

    Article  Google Scholar 

  29. Prause, N., Staley, C., & Fong, T. W. (2013). No evidence of emotion dysregulation in “hypersexuals” reporting their emotions to a sexual film. Sexual Addiction & Compulsivity, 20, 106–126. https://doi.org/10.1080/10720162.2013.772874.

    Article  Google Scholar 

  30. Rosser, B. S., Noor, S. W., & Iantaffi, A. (2014). Normal, problematic, and compulsive consumption of sexually explicit media: Clinical findings using the Compulsive Pornography Consumption (CPC) scale among men who have sex with men. Sexual Addiction & Compulsivity, 21, 276–304. https://doi.org/10.1080/10720162.2014.959145.

    Article  Google Scholar 

  31. Sass, D. (2011). Testing measurement invariance and comparing latent factor means within a confirmatory factor analysis framework. Journal of Psychoeducational Assessment, 29, 347–363. https://doi.org/10.1177/0734282911406661.

    Article  Google Scholar 

  32. Schmitt, N., & Kuljanin, G. (2008). Measurement invariance: Review of practice and implications. Human Resource Management Review, 18, 210–222. https://doi.org/10.1016/j.hrmr.2008.03.003.

    Article  Google Scholar 

  33. Steele, V. R., Staley, C., Fong, T., & Prause, N. (2013). Sexual desire, not hypersexuality, is related to neurophysiological responses elicited by sexual images. Socioaffective Neuroscience & Psychology, 3(1), 20770. https://doi.org/10.3402/snp.v3i0.20770.

    Article  Google Scholar 

  34. Steenkamp, J. B. E., & Baumgartner, H. (1998). Assessing measurement invariance in cross-national consumer research. Journal of Consumer Research, 25, 78–90. https://doi.org/10.1086/209528.

    Article  Google Scholar 

  35. Stöber, J. (2001). The Social Desirability Scale-17 (SDS-17): Convergent validity, discriminant validity, and relationship with age. European Journal of Psychological Assessment, 17, 222–232. https://doi.org/10.1027//1015-5759.17.3.222.

    Article  Google Scholar 

  36. Tabachnick, B. G., & Fiddel, L. S. (2013). Using multivariate statistics (6th ed.). Boston, MA: Pearson.

    Google Scholar 

  37. Voorhees, C. M., Brady, M. K., Calantone, R., & Ramirez, E. (2016). Discriminant validity testing in marketing: An analysis, causes for concern, and proposed remedies. Journal of the Academy of Marketing Science, 44, 119–134. https://doi.org/10.1007/s11747-015-0455-4.

    Article  Google Scholar 

  38. Wetterneck, C. T., Burgess, A. J., Short, M. B., Smith, A. H., & Cervantes, M. E. (2012). The role of sexual compulsivity, impulsivity, and experiential avoidance in Internet pornography use. Psychological Record, 62, 3–18.

    Article  Google Scholar 

  39. Widaman, K. F., Little, T. D., Preacher, K. J., & Sawalani, G. M. (2011). On creating and using short form scales in secondary research. In K. H. Trzesniewski, M. Donnellan, & R. E. Lucas (Eds.), Secondary data analysis: An introduction for psychologists (pp. 39–61). Washington, DC: American Psychological Association. https://doi.org/10.1037/12350-003.

    Chapter  Google Scholar 

Download references

Acknowledgements

The third author was supported by the Carlsberg Foundation Distinguished Associate Professor Fellowship, Grant CF16-0094, for the duration of 2017–2019.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dan J. Miller.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miller, D.J., Kidd, G. & Hald, G.M. Measuring Self-Perceived Effects of Pornography: A Short-Form Version of the Pornography Consumption Effects Scale. Arch Sex Behav 48, 753–761 (2019). https://doi.org/10.1007/s10508-018-1327-z

Download citation

Keywords

  • Pornography
  • Sexually explicit media
  • Self-perceived effects
  • Psychometrics
  • Men