Archives of Sexual Behavior

, Volume 47, Issue 1, pp 27–31 | Cite as

Understanding Homosexuality: Moving on from Patterns to Mechanisms

  • Sergey Gavrilets
  • Urban Friberg
  • William R. Rice
Commentary

Notes

Acknowledgements

We thank P. L. Vasey for useful comments and suggestions. This work was partially supported by the National Institute for Mathematical and Biological Synthesis through NSF Award EF-0830858, with additional support from the University of Tennessee, Knoxville (SG) and the Swedish Research Council (UF).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by the authors.

References

  1. Arnqvist, G., & Rowe, L. (2005). Sexual conflict. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
  2. Bailey, J. M., Dunne, M. P., & Martin, N. G. (2000). Genetic and environmental influences on sexual orientation and its correlates in an Australian twin sample. Journal of Personality and Social Psychology, 78, 524–536.CrossRefPubMedGoogle Scholar
  3. Bailey, J. M., Pillard, R. C., Dawood, K., Miller, M. B., Farrer, L. A., Trivedi, S., & Murphy, R. L. (1999). A family history study of male sexual orientation using three independent samples. Behavior Genetics, 29, 79–85.CrossRefPubMedGoogle Scholar
  4. Ball, M. A., & Parker, G. A. (2003). Sperm competition games: Sperm selection by females. Journal of Theoretical Biology, 224, 27–42.CrossRefPubMedGoogle Scholar
  5. Barta, Z. N., Houston, A. I., McNamara, J. M., & Szekely, T. (2002). Sexual conflict about parental care: The role of reserves. American Naturalist, 159, 687–705.CrossRefPubMedGoogle Scholar
  6. Bateman, A. J. (1948). Intrasexual selection in Drosophila. Heredity, 2, 349–368.CrossRefPubMedGoogle Scholar
  7. Blanchard, R. (2004). Quantitative and theoretical analyses of the relationship between older brothers and homosexuality in men. Journal of Theoretical Biology, 230, 173–187.CrossRefPubMedGoogle Scholar
  8. Blanchard, R. (2017). Fraternal birth order, family size, and male homosexuality: Meta-analysis of studies spanning 25 years. Archives of Sexual Behavior. doi: 10.1007/s10508-017-1007-4.Google Scholar
  9. Blanchard, R., & Bogaert, A. F. (1996). Homosexuality in men and number of older brothers. American Journal of Psychiatry, 153, 27–31.CrossRefPubMedGoogle Scholar
  10. Blanchard, R., & Bogaert, A. F. (2004). Proportion of homosexual men who owe their sexual orientation to fraternal birth order: An estimate based on two national probability samples. American Journal of Human Biology, 16, 151–157.CrossRefPubMedGoogle Scholar
  11. Blanchard, R., & Sheridan, P. M. (1992). Sibship size, sibling sex ratio, birth order, and parental age in homosexual and nonhomosexual gender dysphorics. Journal of Nervous and Mental Disease, 180, 40–47.CrossRefPubMedGoogle Scholar
  12. Bogaert, A. F. (2004). The prevalence of male homosexuality: The effect of fraternal birth order and variations in family size. Journal of Theoretical Biology, 230, 33–37.CrossRefPubMedGoogle Scholar
  13. Bogaert, A. F., & Skorska, M. (2011). Sexual orientation, fraternal birth order, and the maternal immune hypothesis: A review. Frontiers in Neuroendocrinology, 32, 247–254.CrossRefPubMedGoogle Scholar
  14. Byne, W., & Parsons, B. (1993). Human sexual orientation: The biological theories reappraised. Archives of General Psychiatry, 50, 228–239.CrossRefPubMedGoogle Scholar
  15. Caldwell, J. C. (1997). Reaching a stable global population: What we have learnt, and what we must do. Health Transition Review, 7, 37–42.PubMedGoogle Scholar
  16. Camperio-Ciani, A., Battaglia, U., & Zanzotto, G. (2014). Human homosexuality: A paradigmatic arena for sexually antagonistic selection? Cold Spring Harbor Perspective in Biology, 7, a017657.CrossRefGoogle Scholar
  17. Camperio-Ciani, A., Cermelli, P., & Zanzotto, G. (2008). Sexually antagonistic selection in human male homosexuality. PLoS ONE, 3, e2282.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Camperio-Ciani, A., Corna, F., & Capiluppi, C. (2004). Evidence for maternally inherited factors favouring male homosexuality and promoting female fecundity. Proceedings of the Royal Society London B, 271, 2217–2221.CrossRefGoogle Scholar
  19. Cantor, J. M., Blanchard, R., Paterson, A. D., & Bogaert, A. F. (2002). How many gay men owe their sexual orientation to fraternal birth order? Archives of Sexual Behavior, 31, 63–71.CrossRefPubMedGoogle Scholar
  20. Chaix, R., Cao, C., & Donnelly, P. (2008). Is mate choice in humans MHC-dependent? PLoS Genetics, 4, e1000184.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Downey, J. (1987). Sex hormones in lesbian and heterosexual women. Hormones and Behavior, 21, 347–357.CrossRefPubMedGoogle Scholar
  22. Gavrilets, S. (2014). Is sexual conflict an engine of speciation? Cold Spring Harbor Perspective in Biology, 6, a017723.CrossRefGoogle Scholar
  23. Gavrilets, S., & Rice, W. R. (2006). Genetic models of homosexuality: Generating testable predictions. Proceedings of the Royal Society London B, 273, 3031–3038.CrossRefGoogle Scholar
  24. Haig, D. (2000). The kinship theory of genomic imprinting. Annual Reviews in Ecology and Systematics, 31, 9–32.CrossRefGoogle Scholar
  25. Hamer, D. H., Hu, S., Magnuson, V. L., Hu, N., & Pattatucci, A. M. (1993). A linkage between DNA markers on the X chromosome and male sexual orientation. Science, 261, 321–327.CrossRefPubMedGoogle Scholar
  26. Hemberger, M., Dean, W., & Reik, W. (2009). Epigenetic dynamics of stem cells and cell lineage commitment: Digging Waddington’s canal. Nature Reviews Molecular Cell Biology, 10, 526–537.CrossRefPubMedGoogle Scholar
  27. Holland, B., & Rice, W. R. (1998). Chase-away sexual selection: Antagonistic seduction versus resistance. Evolution, 52, 1–7.CrossRefPubMedGoogle Scholar
  28. Hu, S., Pattatucci, A., Patterson, C., Li, L., Fulker, D., Cherny, S., et al. (1995). Linkage between sexual orientation and chromosome Xq28 in males but not females. Nature Genetics, 11, 248–256.CrossRefPubMedGoogle Scholar
  29. Jaffee, W. L., McCormack, M. M., & Vaitukaitis, J. L. (1980). Plasma hormones and the sexual preferences of men. Psychoneuroendocrinology, 5, 33–38.CrossRefPubMedGoogle Scholar
  30. Kirk, K. M., Bailey, J. M., Dunne, M. P., & Martin, N. G. (2000). Measurement models for sexual orientation in a community twin sample. Behavior Genetics, 30, 345–356.CrossRefPubMedGoogle Scholar
  31. Långström, N., Rahman, Q., Carlström, E., & Lichtenstein, P. (2010). Genetic and environmental effects on same-sex sexual behavior: A population study of twins in Sweden. Archives of Sexual Behavior, 39, 75–80.CrossRefPubMedGoogle Scholar
  32. LeVay, S. (2016). Gay, straight, and the reason why: The science of sexual orientation (2nd ed.). Oxford, UK: Oxford University Press.Google Scholar
  33. Manikkam, M., Guerrero-Bosagna, C., Tracey, R., Haque, M. M., & Skinner, M. K. (2012). Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures. PLoS ONE, 7, e3190.Google Scholar
  34. Meyer-Bahlburg, H. F. L. (1984). Psychoendocrine research on sexual orientation: Current status and future options. Progress in Brain Research, 61, 375–398.CrossRefPubMedGoogle Scholar
  35. Milinski, M. (2006). The major histocompatibility complex, sexual selection, and mate choice. Annual Review of Ecology and Systematics, 37, 159–186.CrossRefGoogle Scholar
  36. Mustanski, B. S., DuPree, M. G., Nievergelt, C. M., Bocklandt, S., Schork, N. J., & Hamer, D. H. (2005). A genome wide scan of male sexual orientation. Human Genetics, 116, 272–278.CrossRefPubMedGoogle Scholar
  37. Ngun, T. C., Ghahramani, N., Sánchez, F. J., Bocklandt, S., & Vilain, E. (2011). The genetics of sex differences in brain and behavior. Frontiers in Neuroendocrinology, 32, 227–246.CrossRefPubMedGoogle Scholar
  38. Parker, G. A. (1979). Sexual selection and sexual conflict. In M. S. Blum & N. A. Blum (Eds.), Sexual selection and reproductive competition in insects (pp. 123–166). New York, NY: Academic Press.Google Scholar
  39. Pattatucci, A. M. L., & Hamer, D. H. (1995). Development and familiality of sexual orientation in females. Behavior Genetics, 25, 407–420.CrossRefPubMedGoogle Scholar
  40. Pierik, F. H., Burdorf, A., Deddens, J. A., Juttmann, R. E., & Weber, R. F. A. (2004). Maternal and paternal risk factors for cryptorchidism and hypospadias: A case-control study in newborn boys. Environmental and Health Perspectives, 112, 1570–1576.CrossRefGoogle Scholar
  41. Ramagopalan, S. V., Dyment, D. A., Handunneththi, L., Rice, G. P., & Ebers, G. C. (2010). A genome-wide scan of male sexual orientation. Journal of Human Genetics, 55, 131–132.CrossRefPubMedGoogle Scholar
  42. Rice, G., Anderson, C., Risch, N., & Ebers, G. (1999). Male homosexuality: Absence of linkage to microsatellite markers at Xq28. Science, 284, 665–667.CrossRefPubMedGoogle Scholar
  43. Rice, W. R. (1998). Intergenomic conflict, interlocus antagonistic coevolution, and the evolution of reproductive isolation. In D. J. Howard & S. H. Berlocher (Eds.), Endless forms: Species and speciation (pp. 261–270). New York, NY: Oxford University Press.Google Scholar
  44. Rice, W. R., Friberg, U., & Gavrilets, S. (2012). Homosexuality as a consequence of epigenetically canalized sexual development. Quarterly Reviews in Biology, 87, 343–368.CrossRefGoogle Scholar
  45. Rice, W. R., Friberg, U., & Gavrilets, S. (2013). Homosexuality via canalized sexual development: A testing protocol for a new epigenetic model. BioEssays, 35, 343–368.CrossRefGoogle Scholar
  46. Rice, W. R., Friberg, U., & Gavrilets, S. (2016). Sexually antagonistic epigenetic marks that canalize sexually dimorphic development. Molecular Ecology, 25, 1812–1822.CrossRefPubMedGoogle Scholar
  47. Rice, W. R., & Gavrilets, S. (2014). The genetics and biology of sexual conflict. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  48. Rice, W. R., Gavrilets, S., & Friberg, U. (2008). Sexually antagonistic ‘zygotic drive’ of the sex chromosomes. PLoS Genetics, 4, e1000313.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Rice, W. R., & Holland, B. (1997). The enemies within: Intergenomic conflict, interlocus contest evolution (ICE), and intraspecific Red Queen. Behavioral Ecology and Sociobiology, 41, 1–10.CrossRefGoogle Scholar
  50. Sanders, A. R., Martin, E. R., Beecham, G. W., Guo, S., Dawood, K., Rieger, G., et al. (2015). Genome-wide scan demonstrates significant linkage for male sexual orientation. Psychological Medicine, 45, 1379–1388.CrossRefPubMedGoogle Scholar
  51. Semenyna, S. W., Petterson, L. J., VanderLaan, D. P., & Vasey, P. L. (2017). A comparison of the reproductive output among the relatives of Samoan androphilic fa’afafine and gynephilic men. Archives of Sexual Behavior, 46, 87–93.CrossRefPubMedGoogle Scholar
  52. Smith, H. G., & Härdling, R. (2000). Clutch size evolution under sexual conflict enhances the stability of mating systems. Proceedings of the Royal Society London B, 267, 2163–2170.CrossRefGoogle Scholar
  53. Trivers, R. L. (1972). Parental investment and sexual selection. In B. Campbell (Ed.), Sexual selection and the descent of Man 1871–1971 (pp. 136–179). Chicago, IL: Aldine Publishing.Google Scholar
  54. VanderLaan, D. P., & Vasey, P. L. (2011). Male sexual orientation in Independent Samoa: Evidence for fraternal birth order and maternal fecundity effects. Archives of Sexual Behavior, 40, 495–503.CrossRefPubMedGoogle Scholar
  55. Wedekind, C., Seebeck, T., Bettens, F., & Paepke, A. J. (1995). MHC-dependent mate preferences in humans. Proceedings Biological Sciences, 22, 245–249.CrossRefGoogle Scholar
  56. Whitehead, N. E. (2007). An antiboy antibody? Re-examination of the maternal immune hypothesis. Journal of Biological Science, 39, 905–921.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Sergey Gavrilets
    • 1
    • 2
    • 3
  • Urban Friberg
    • 4
  • William R. Rice
    • 5
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleUSA
  2. 2.Department of MathematicsUniversity of TennesseeKnoxvilleUSA
  3. 3.National Institute for Mathematical and Biological SynthesisUniversity of TennesseeKnoxvilleUSA
  4. 4.IFM BiologyLinkoping UniversityLinkopingSweden
  5. 5.Department of Ecology, Evolution and Marine BiologyUniversity of California Santa BarbaraSanta BarbaraUSA

Personalised recommendations