Skip to main content

Diffusion Tensor Imaging of Pedophilia

Abstract

Pedophilia is a principal motivator of child molestation, incurring great emotional and financial burdens on victims and society. Even among pedophiles who never commit any offense, the condition requires lifelong suppression and control. Previous comparison using voxel-based morphometry (VBM) of MR images from a large sample of pedophiles and controls revealed group differences in white matter. The present study therefore sought to verify and characterize white matter involvement using diffusion tensor imaging (DTI), which better captures the microstructure of white matter than does VBM. Pedophilic sex offenders (n = 24) were compared with healthy, age-matched controls with no criminal record and no indication of pedophilia (n = 32). White matter microstructure was analyzed with Tract-Based Spatial Statistics, and the trajectories of implicated fiber bundles were identified by probabilistic tractography. Groups showed significant, highly focused differences in DTI parameters which related to participants’ genital responses to sexual depictions of children, but not to measures of psychopathy or to childhood histories of physical abuse, sexual abuse, or neglect. Some previously reported gray matter differences were suggested under highly liberal statistical conditions (p uncorrected < .005), but did not survive ordinary statistical correction (whole brain per voxel false discovery rate of 5 %). These results confirm that pedophilia is characterized by neuroanatomical differences in white matter microstructure, over and above any neural characteristics attributable to psychopathy and childhood adversity, which show neuroanatomic footprints of their own. Although some gray matter structures were implicated previously, only few have emerged reliably.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. 1.

    In this article, we use the term pedophilia broadly, so as to include hebephilia. This corresponds to the ICD-10 definition: “A sexual preference for children, boys or girls or both, usually of prepubertal or early pubertal age” (World Health Organization, 2008).

References

  1. Anderson, N. E., & Kiehl, K. A. (2012). The psychopath magnetized: Insights from brain imaging. Trends in Cognitive Sciences, 16, 52–60.

    PubMed Central  Article  PubMed  Google Scholar 

  2. Andersson, J. L. R., Jenkinson, M., & Smith, S. (2007a). Non-linear optimisation. FMRIB technical report TR07JA1. Retrieved from May 29, 2013 from www.fmrib.ox.ac.uk/analysis/techrep.

  3. Andersson, J. L. R., Jenkinson, M., & Smith, S. (2007b). Non-linear registration, aka Spatial normalisation. FMRIB technical report TR07JA2. Retrieved from May 29, 2013 from www.fmrib.ox.ac.uk/analysis/techrep.

  4. Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26, 839–851.

    Article  PubMed  Google Scholar 

  5. Blair, R. J. (2003). Neurobiological basis of psychopathy. British Journal of Psychiatry, 182, 5–7.

    Article  PubMed  Google Scholar 

  6. Blanchard, R., Christensen, B. K., Strong, S. M., Cantor, J. M., Kuban, M. E., Klassen, P., … Blak, T. (2002). Retrospective self-reports of childhood accidents causing unconsciousness in phallometrically diagnosed pedophiles. Archives of Sexual Behavior, 31, 511–526.

  7. Blanchard, R., Klassen, P., Dickey, R., Kuban, M. E., & Blak, T. (2001). Sensitivity and specificity of the phallometric test for pedophilia in nonadmitting sex offenders. Psychological Assessment, 13, 118–126.

    Article  PubMed  Google Scholar 

  8. Blanchard, R., Kolla, N. J., Cantor, J. M., Klassen, P. E., Dickey, R., Kuban, M. E., & Blak, T. (2007). IQ, handedness, and pedophilia in adult male patients stratified by referral source. Sexual Abuse: A Journal of Research and Treatment, 19, 285–309.

    Google Scholar 

  9. Blanchard, R., Kuban, M. E., Klassen, P., Dickey, R., Christensen, B. K., Cantor, J. M., & Blak, T. (2003). Self-reported injuries before and after age 13 in pedophilic and non-pedophilic men referred for clinical assessment. Archives of Sexual Behavior, 32, 573–581.

    Article  PubMed  Google Scholar 

  10. Cantor, J. M., Blanchard, R., Christensen, B. K., Dickey, R., Klassen, P. E., Beckstead, A. L., … Kuban, M. E. (2004). Intelligence, memory, and handedness in pedophilia. Neuropsychology, 18, 3–14.

  11. Cantor, J. M., Blanchard, R., Robichaud, L. K., & Christensen, B. K. (2005a). Quantitative reanalysis of aggregate data on IQ in sexual offenders. Psychological Bulletin, 131, 555–568.

    Article  PubMed  Google Scholar 

  12. Cantor, J. M., Kabani, N., Christensen, B. K., Zipursky, R. B., Barbaree, H. E., Dickey, R., … Blanchard, R. (2008). Cerebral white matter deficiencies in pedophilic men. Journal of Psychiatric Research, 42, 167–183.

  13. Cantor, J. M., Klassen, P. E., Dickey, R., Christensen, B. K., Kuban, M. E., Blak, T., & Blanchard, R. (2005b). Handedness in pedophilia and hebephilia. Archives of Sexual Behavior, 34, 447–459.

    Article  PubMed  Google Scholar 

  14. Cantor, J. M., Kuban, M. E., Blak, T., Klassen, P. E., Dickey, R., & Blanchard, R. (2006). Grade failure and special education placement in sexual offenders’ educational histories. Archives of Sexual Behavior, 35, 743–751.

    Article  PubMed  Google Scholar 

  15. Cantor, J. M., Kuban, M. E., Blak, T., Klassen, P. E., Dickey, R., & Blanchard, R. (2007). Physical height in pedophilia and hebephilia. Sexual Abuse: A Journal of Research and Treatment, 19, 395–407.

    Google Scholar 

  16. Cantor, J. M., & Sutton, K. S. (2014). Paraphilia, gender dysphoria, and hypersexuality. In P. H. Blaney & T. Millon (Eds.), Oxford textbook of psychopathology (3rd ed., pp. 589–614). New York: Oxford University Press.

    Google Scholar 

  17. Dyshniku, F., Murray, M. E., Fazio, R. L., Lykins, A. D., & Cantor, J. M. (2014). Minor physical anomalies as a window into the prenatal origins of pedophilia. Archives of Sexual Behavior. doi:10.1007/s10508-015-0564-7.

    Google Scholar 

  18. Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., & Ziles, K. (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage, 25, 1325–1335.

    Article  PubMed  Google Scholar 

  19. Ewing, J. A. (1984). Detecting alcoholism: The CAGE Questionaire. Journal of the American Medical Association, 252, 1905–1907.

    Article  PubMed  Google Scholar 

  20. Fazio, R. L., & Cantor, J. M. (2015). Factor structure of the Edinburgh Handedness Inventory versus the Fazio Laterality Inventory in a population with established atypical handedness. Applied Neuropsychology, 22, 156–160.

    Article  PubMed  Google Scholar 

  21. Fazio, R. L., Dyshniku, F., Lykins, A. D., & Cantor, J. M. (2014). Leg length versus torso length in pedophilia: Further evidence of atypical physical development early in life. Manuscript submitted for publication.

  22. Fazio, R. L., Lykins, A. D., & Cantor, J. M. (2014). Elevated rates of atypical-handedness in pedophilia: Theory and implications. Laterality, 19, 690–704.

    PubMed Central  PubMed  Google Scholar 

  23. First, M. B., Gibbon, M., Spitzer, R. L., Williams, J. B. W., & Benjamin, L. S. (1997). Structured clinical interview for DSM-IV axis II personality disorders (SCID-II). Washington, DC: American Psychiatric Press.

    Google Scholar 

  24. First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (2002). Structured clinical interview for DSM-IV-TR axis I disorders, research version, patient edition (SCID-I/P). New York: Biometrics Research, New York State Psychiatric Institute.

    Google Scholar 

  25. Hayasaka, S., & Nichols, T. E. (2003). Validating cluster size inference: Random field and permutation methods. NeuroImage, 20, 2343–2356.

    Article  PubMed  Google Scholar 

  26. Kiehl, K. A., Smith, A. M., Hare, R. D., Mendrek, A., Forster, B. B., Brink, J., & Liddle, P. F. (2001). Limbic abnormalities in affective processing by criminal psychopaths as revealed by functional magnetic resonance imaging. Biological Psychiatry, 50, 677–684.

    Article  PubMed  Google Scholar 

  27. Kühn, S., & Gallinat, J. (2011). A quantitative meta-analysis on cue-induced male sexual arousal. Journal of Sexual Medicine, 8, 2269–2275.

    Article  PubMed  Google Scholar 

  28. Leemans, A., & Jones, D. K. (2009). The B-matrix must be rotated when correcting for subject motion in DTI data. Magnetic Resonance in Medicine, 61, 1336–1349.

    Article  PubMed  Google Scholar 

  29. Levenson, M. R., Kiehl, K. A., & Fitzpatrick, C. M. (1995). Assessing psychopathic attributes in a noninstitutionalized population. Journal of Personality and Social Psychology, 68, 151–158.

    Article  PubMed  Google Scholar 

  30. McPhail, I. V., & Cantor, J. M. (2015). Pedophilia, height, and the magnitude of the association: A research note. Deviant Behavior, 36, 288–292.

    Article  Google Scholar 

  31. Moayedi, M., Weissman-Fogel, I., Salomons, T. V., Crawley, A. P., Goldberg, M. B., Freeman, B. V., … Davis, K. D. (2012). White matter brain and trigeminal nerve abnormalities in temporomandibular disorder. Pain, 153, 1467–1477.

  32. Mori, S., Wakana, S., Nagae-Poetscher, L. M., & van Zijl, P. C. M. (2005). MRI atlas of human white matter. Amsterdam: Elsevier Science.

    Google Scholar 

  33. Müller, J. L., Sommer, M., Wagner, V., Lange, K., Taschler, H., Röder, C. H., & Hajak, G. (2003). Abnormalities in emotion processing within cortical and subcortical regions in criminal psychopaths: Evidence from a functional magnetic resonance imaging study using picture with emotional content. Biological Psychiatry, 54, 152–162.

    Article  PubMed  Google Scholar 

  34. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97–113.

    Article  PubMed  Google Scholar 

  35. Poeppl, T. B., Langguth, B., Laird, A. R., & Eickhoff, S. B. (2014). The functional neuroanatomy of male psychosexual and physiosexual arousal: A quantitative meta-analysis. Human Brain Mapping, 35, 1404–1421.

    Article  PubMed  Google Scholar 

  36. Poeppl, T. B., Nitschke, J., Santtila, P., Schecklmann, M., Langguth, B., Greenlee, M. W., … Mokros, A. (2013). Association between brain structure and phenotypic characteristics in pedophilia. Journal of Psychiatric Research, 47, 678–685.

  37. Rueckert, D. (1999). Non-rigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging, 18, 712–721.

    Article  PubMed  Google Scholar 

  38. Schiffer, B., Peschel, T., Paul, T., Gizewski, E., Forsting, M., & Leygraf, N., … Krueger, T. H. (2007). Structural brain abnormalities in the frontostriatal system and cerebellum in pedophilia. Journal of Psychiatric Research, 41, 753–762.

  39. Schiltz, K., Witzel, J., Northoff, G., Zierhut, K., Gubka, U., Fellmann, H., … Bogerts, B. (2007). Brain pathology in pedophilic offenders: Evidence of volume reduction in the right amygdala and related diencephalic structures. Archives of General Psychiatry, 64, 737–746.

  40. Seto, M. C. (2008). Pedophilia and sexual offenses against children: Theory, assessment, and intervention. Washington, DC: American Psychological Association Press.

    Book  Google Scholar 

  41. Seto, M. C. (2013). Internet sex offenders. Washington, DC: American Psychological Association Press.

    Book  Google Scholar 

  42. Seto, M. C., Cantor, J. M., & Blanchard, R. (2006). Child pornography offenses are a valid diagnostic indicator of pedophilia. Journal of Abnormal Psychology, 115, 610–615.

    Article  PubMed  Google Scholar 

  43. Shipley, W. C. (1940). A self-administering scale for measuring intellectual impairment and deterioration. Journal of Psychology, 9, 371–377.

    Article  Google Scholar 

  44. Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143–155.

    Article  PubMed  Google Scholar 

  45. Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., … Behrens, T. E. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage, 31, 1487–1505.

  46. Soderstrom, H., Hultin, L., Tullberg, M., Wikkelso, C., Ekholm, S., & Forsman, A. (2002). Reduced frontotemporal perfusion in psychopathic personality. Psychiatry Research: Neuroimaging, 114, 81–94.

    Article  PubMed  Google Scholar 

  47. Stoléru, S., Fonteille, V., Cornélis, C., Joyal, C., & Moulier, V. (2012). Functional neuroimaging studies of sexual arousal and orgasm in healthy men and women: A review and meta-analysis. Neuroscience and Biobehavioral Reviews, 36, 1481–1509.

    Article  PubMed  Google Scholar 

  48. Straus, M. A. (1979). Measuring intrafamily conflict and violence: The Conflict Tactics (CT) Scales. Journal of Marriage and the Family, 41, 75–86.

    Article  Google Scholar 

  49. Tiihonen, J., Hodgins, S., Vaurio, O., Laakso, M., Repo, E., Soininen, H., … Savolainen, L. (2000). Amygdaloid volume loss in psychopathy. Society for Neuroscience Abstracts, 2017.

  50. von Honk, J., & Schutter, J. L. G. (2006). Unmasking feigned sanity: A neurobiological model of emotion processing in primary psychopathy. Cognitive Neuropsychiatry, 11, 285–306.

    Article  PubMed  Google Scholar 

  51. Wakana, S., Caprihan, A., Panzenboeck, M. M., Fallon, J. H., Perry, M., Gollub, R. L., … Mori, S. (2007). Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage, 36, 630–644.

  52. Weeks, R., & Widom, C. S. (1998). Self-reports of early childhood victimization among incarcerated adult male felons. Journal of Interpersonal Violence, 13, 346–361.

    Article  Google Scholar 

  53. Whitford, T. J., Kubicki, M., Schneiderman, J. S., O’Donnell, L. J., King, R., Alvarado, J. L., & Shenton, M. E. (2010). Corpus callosum abnormalities and their association with psychotic symptoms in patients with schizophrenia. Biological Psychiatry, 68, 70–77.

    PubMed Central  Article  PubMed  Google Scholar 

  54. Whitford, T. J., Kubicki, M., & Shenton, M. E. (2011). Diffusion tensor imaging, structural connectivity, and schizophrenia. Schizophrenia Research and Treatment. doi:10.1155/2011/709523.

    PubMed Central  PubMed  Google Scholar 

  55. Widom, C. S., & Morris, S. (1997). Accuracy of adult recollections of childhood victimization: Part II. Childhood sexual abuse. Psychological Assessment, 9, 34–46.

    Article  Google Scholar 

  56. Widom, C. S., & Shepard, R. L. (1996). Accuracy of adult recollections of childhood victimization: Part 1. Childhood physical abuse. Psychological Assessment, 8, 412–421.

    Article  Google Scholar 

  57. Williams, S. M. (1986). Factor analysis of the Edinburgh Handedness Inventory. Cortex, 22, 325–326.

    Article  PubMed  Google Scholar 

  58. World Health Organization. (2008). International statistical classification of diseases and related health problems (10th rev.). Retrieved May 29, 2013 from http://apps.who.int/classifications/icd10/browse/2010/en#/F60-F69.

Download references

Acknowledgments

This research was supported by Canadian Institutes for Health Research (CIHR) grant 89719 awarded to James Cantor. Portions of these results have been presented at the International Association for the Treatment of Sexual Offenders, Porto, Portugal, September 2014.

Author information

Affiliations

Authors

Corresponding author

Correspondence to James M. Cantor.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cantor, J.M., Lafaille, S., Soh, D.W. et al. Diffusion Tensor Imaging of Pedophilia. Arch Sex Behav 44, 2161–2172 (2015). https://doi.org/10.1007/s10508-015-0629-7

Download citation

Keywords

  • DSM-5
  • Fractional anisotropy
  • Hebephilia
  • Paraphilia
  • Pedophilia
  • Probabilistic tractography