Archives of Sexual Behavior

, Volume 43, Issue 8, pp 1515–1523 | Cite as

Click-Evoked Otoacoustic Emissions in Children and Adolescents with Gender Identity Disorder

  • Sarah M. Burke
  • Willeke M. Menks
  • Peggy T. Cohen-Kettenis
  • Daniel T. Klink
  • Julie Bakker
Original Paper


Click-evoked otoacoustic emissions (CEOAEs) are echo-like sounds that are produced by the inner ear in response to click-stimuli. CEOAEs generally have a higher amplitude in women compared to men and neonates already show a similar sex difference in CEOAEs. Weaker responses in males are proposed to originate from elevated levels of testosterone during perinatal sexual differentiation. Therefore, CEOAEs may be used as a retrospective indicator of someone’s perinatal androgen environment. Individuals diagnosed with Gender Identity Disorder (GID), according to DSM-IV-TR, are characterized by a strong identification with the other gender and discomfort about their natal sex. Although the etiology of GID is far from established, it is hypothesized that atypical levels of sex steroids during a critical period of sexual differentiation of the brain might play a role. In the present study, we compared CEOAEs in treatment-naïve children and adolescents with early-onset GID (24 natal boys, 23 natal girls) and control subjects (65 boys, 62 girls). We replicated the sex difference in CEOAE response amplitude in the control group. This sex difference, however, was not present in the GID groups. Boys with GID showed stronger, more female-typical CEOAEs whereas girls with GID did not differ in emission strength compared to control girls. Based on the assumption that CEOAE amplitude can be seen as an index of relative androgen exposure, our results provide some evidence for the idea that boys with GID may have been exposed to lower amounts of androgen during early development in comparison to control boys.


Otoacoustic emissions Gender Identity Disorder Gender Dysphoria Sex differences Androgen Sexual differentiation 



We thank Mrs. Iris Franken-Boot, who kindly assisted with the data collection and helped with the patient recruitment. We further thank Dr. Ir. Emile de Kleine and Prof. Pim van Dijk from the University Medical Center Groningen, who kindly introduced us to the OAE equipment and provided us with example protocols for data collection. This study was funded by a VICI Grant (453-08-003) from the Dutch Science Foundation (Nederlandse Organisatie voor Wetenschappelijk Onderzoek) to J. Bakker. J. Bakker is a Senior Research Associate of the Belgian Fonds National de la Recherche Scientifique.


  1. Aidan, D., Lestang, P., Avan, P., & Bonfils, P. (1997). Characteristics of transient-evoked otoacoustic emissions (TEOES) in neonates. Acta Otolaryngologica, 117, 25–30.CrossRefGoogle Scholar
  2. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed., text rev.). Washington, DC: Author.Google Scholar
  3. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: Author.Google Scholar
  4. Balthazart, J. (2011). Mini-review: Hormones and human sexual orientation. Endocrinology, 152, 2937–2947.PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bell, A. (1992). Circadian and menstrual rhythms in frequency variations of spontaneous otoacoustic emissions from human ears. Hearing Research, 58, 91–100.CrossRefPubMedGoogle Scholar
  6. Bentz, E.-K., Hefler, L. A., Kaufmann, U., Huber, J. C., Kolbus, A., & Tempfer, C. B. (2008). A polymorphism of the CYP17 gene related to sex steroid metabolism is associated with female-to-male but not male-to-female transsexualism. Fertility and Sterility, 90, 56–59.CrossRefPubMedGoogle Scholar
  7. Berninger, E. (2007). Characteristics of normal newborn transient-evoked otoacoustic emissions: Ear asymmetries and sex effects. International Journal of Audiology, 46, 661–669.CrossRefPubMedGoogle Scholar
  8. Boklage, C. E. (1985). Interactions between opposite-sex dizygotic fetuses and the assumptions of Weinberg difference method epidemiology. American Journal of Human Genetics, 37, 591–605.PubMedCentralPubMedGoogle Scholar
  9. Breedlove, S. M. (2010). Organizational hypothesis: Instances of the fingerpost. Endocrinology, 151, 4116–4122.PubMedCentralCrossRefPubMedGoogle Scholar
  10. Burns, E. M. (2009). Long-term stability of spontaneous otoacoustic emissions. Journal of the Acoustical Society of America, 125, 3166–3176.PubMedCentralCrossRefPubMedGoogle Scholar
  11. Burns, E. M., Arehart, K. H., & Campbell, S. L. (1992). Prevalence of spontaneous otoacoustic emissions in neonates. Journal of the Acoustical Society of America, 91, 1571–1575.CrossRefPubMedGoogle Scholar
  12. Cassidy, J. W., & Ditty, K. M. (2001). Gender differences among newborns on a transient otoacoustic emissions test for hearing. Journal of Music Therapy, 38, 28–35.CrossRefPubMedGoogle Scholar
  13. Cohen, J. (1977). Statistical power analysis for behavioral sciences (rev ed.). New York: Academic Press.Google Scholar
  14. Cohen-Bendahan, C. C. C., Buitelaar, J. K., van Goozen, S. H. M., & Cohen-Kettenis, P. T. (2004). Prenatal exposure to testosterone and functional cerebral lateralization: A study in same-sex and opposite-sex twin girls. Psychoneuroendocrinology, 29, 911–916.CrossRefPubMedGoogle Scholar
  15. Cohen-Bendahan, C. C. C., Buitelaar, J. K., van Goozen, S. H. M., Orlebeke, J. F., & Cohen-Kettenis, P. T. (2005). Is there an effect of prenatal testosterone on aggression and other behavioral traits? A study comparing same-sex and opposite-sex twin girls. Hormones and Behavior, 47, 230–237.CrossRefPubMedGoogle Scholar
  16. Cohen-Kettenis, P. T., Steensma, T. D., & de Vries, A. L. C. (2011). Treatment of adolescents with gender dysphoria in the Netherlands. Child and Adolescent Psychiatric Clinics of North America, 20, 689–700.CrossRefPubMedGoogle Scholar
  17. Cohen-Kettenis, P. T., van Goozen, S. H., Doorn, C. D., & Gooren, L. J. (1998). Cognitive ability and cerebral lateralisation in transsexuals. Psychoneuroendocrinology, 23, 631–641.CrossRefPubMedGoogle Scholar
  18. Collet, L., Gartner, M., Veuillet, E., Moulin, A., & Morgon, A. (1993). Evoked and spontaneous otoacoustic emissions: A comparison of neonates and adults. Brain & Development, 15, 249–252.CrossRefGoogle Scholar
  19. Corbier, P., Edwards, D. A., & Roffi, J. (1992). The neonatal testosterone surge: A comparative study. Archives internationales de physiologie, de biochimie et de biophysique, 100, 127–131.CrossRefPubMedGoogle Scholar
  20. Dörner, G. (1988). Neuroendocrine response to estrogen and brain differentiation in heterosexuals, homosexuals, and transsexuals. Archives of Sexual Behavior, 17, 57–75.CrossRefPubMedGoogle Scholar
  21. Driscoll, C., Kei, J., & McPherson, B. (2000). Transient evoked otoacoustic emissions in 6-year-old school children: A normative study. Scandinavian Audiology, 29, 103–110.CrossRefPubMedGoogle Scholar
  22. Driscoll, C., Kei, J., Murdoch, B., McPherson, B., Smyth, V., Latham, S., & Loscher, J. (1999). Transient evoked otoacoustic emissions in two-month-old infants: A normative study. Audiology, 38, 181–186.Google Scholar
  23. Drummond, K. D., Bradley, S. J., Badali-Peterson, M., & Zucker, K. J. (2008). A follow-up study of girls with gender identity disorder. Developmental Psychology, 44, 34–45.CrossRefPubMedGoogle Scholar
  24. Finegan, J. A., Bartleman, B., & Wong, P. Y. (1989). A window for the study of prenatal sex hormone influences on postnatal development. Journal of Genetic Psychology, 150, 101–112.CrossRefPubMedGoogle Scholar
  25. Galis, F., Ten Broek, C. M. A., Van Dongen, S., & Wijnaendts, L. C. D. (2010). Sexual dimorphism in the prenatal digit ratio (2D:4D). Archives of Sexual Behavior, 39, 57–62.PubMedCentralCrossRefPubMedGoogle Scholar
  26. Gooren, L. (2006). The biology of human psychosexual differentiation. Hormones and Behavior, 50, 589–601.CrossRefPubMedGoogle Scholar
  27. Green, R. (1987). The “sissy boy syndrome” and the development of homosexuality. New Haven, CT: Yale University Press.Google Scholar
  28. Grimbos, T., Dawood, K., Burriss, R. P., Zucker, K. J., & Puts, D. A. (2010). Sexual orientation and the second to fourth finger length ratio: A meta-analysis in men and women. Behavioral Neuroscience, 124, 278–287.CrossRefPubMedGoogle Scholar
  29. Haggerty, H. S., Lusted, H. S., & Morton, S. C. (1993). Statistical quantification of 24-hour and monthly variabilities of spontaneous otoacoustic emission frequency in humans. Hearing Research, 70, 31–49.CrossRefPubMedGoogle Scholar
  30. Hall, J. W. (2000). Handbook of otoacoustic emissions. San Diego, CA: Singular Thomson Learning.Google Scholar
  31. Hare, L., Bernard, P., Sánchez, F. J., Baird, P. N., Vilain, E., Kennedy, T., & Harley, V. R. (2009). Androgen receptor repeat length polymorphism associated with male-to-female transsexualism. Biological Psychiatry, 65, 93–96.Google Scholar
  32. Heylens, G., De Cuypere, G., Zucker, K. J., Schelfaut, C., Elaut, E., Vanden Bossche, H., et al. (2012). Gender identity disorder in twins: A review of the case report literature. Journal of Sexual Medicine, 9, 751–757.Google Scholar
  33. Hönekopp, J., & Watson, S. (2010). Meta-analysis of digit ratio 2D:4D shows greater sex difference in the right hand. American Journal of Human Biology, 22, 619–630.CrossRefPubMedGoogle Scholar
  34. Ismail, H., & Thornton, A. R. D. (2003). The interaction between ear and sex differences and stimulus rate. Hearing Research, 179, 97–103.CrossRefPubMedGoogle Scholar
  35. Kei, J., McPherson, B., Smyth, V., Latham, S., & Loscher, J. (1997). Transient evoked otoacoustic emissions in infants: Effects of gender, ear asymmetry and activity status. Audiology, 36, 61–71.CrossRefPubMedGoogle Scholar
  36. Kemp, D. T. (2002). Otoacoustic emissions, their origin in cochlear function, and use. British Medical Bulletin, 63, 223–241.CrossRefPubMedGoogle Scholar
  37. Keogh, T., Kei, J., Driscoll, C., & Smyth, V. (2001). Distortion-product otoacoustic emissions in schoolchildren: Effects of ear asymmetry, handedness, and gender. Journal of the American Academy of Audiology, 12, 506–513.PubMedGoogle Scholar
  38. Kraemer, B., Noll, T., Delsignore, A., Milos, G., Schnyder, U., & Hepp, U. (2009). Finger length ratio (2D:4D) in adults with gender identity disorder. Archives of Sexual Behavior, 38, 359–363.CrossRefPubMedGoogle Scholar
  39. Kreukels, B. P. C., & Cohen-Kettenis, P. T. (2011). Puberty suppression in gender identity disorder: The Amsterdam experience. Nature Reviews. Endocrinology, 7, 466–472.CrossRefPubMedGoogle Scholar
  40. Lamminmäki, A., Hines, M., Kuiri-Hänninen, T., Kilpeläinen, L., Dunkel, L., & Sankilampi, U. (2012). Testosterone measured in infancy predicts subsequent sex-typed behavior in boys and in girls. Hormones and Behavior, 61, 611–616.CrossRefPubMedGoogle Scholar
  41. Lavigne-Rebillard, M., & Pujol, R. (1986). Development of the auditory hair cell surface in human fetuses. A scanning electron microscopy study. Anatomy and Embryology, 174, 369–377.CrossRefPubMedGoogle Scholar
  42. Lawrence, A. A. (2010). Sexual orientation versus age of onset as bases for typologies (subtypes) for gender identity disorder in adolescents and adults. Archives of Sexual Behavior, 39, 514–545.CrossRefPubMedGoogle Scholar
  43. Loehlin, J. C., & McFadden, D. (2003). Otoacoustic emissions, auditory evoked potentials, and traits related to sex and sexual orientation. Archives of Sexual Behavior, 32, 115–127.CrossRefPubMedGoogle Scholar
  44. Lutchmaya, S., Baron-Cohen, S., Raggatt, P., Knickmeyer, R., & Manning, J. T. (2004). 2nd to 4th digit ratios, fetal testosterone and estradiol. Early Human Development, 77, 23–28.CrossRefPubMedGoogle Scholar
  45. Maico Diagnostics. (2009). Pediatricians guide to otoacoustic emissions (OAEs) and tympanometry. Retrieved from
  46. Malas, M. A., Dogan, S., Evcil, E. H., & Desdicioglu, K. (2006). Fetal development of the hand, digits and digit ratio (2D:4D). Early Human Development, 82, 469–475.CrossRefPubMedGoogle Scholar
  47. Manning, J. T., Scutt, D., Wilson, J., & Lewis-Jones, D. I. (1998). The ratio of 2nd to 4th digit length: A predictor of sperm numbers and concentrations of testosterone, luteinizing hormone and oestrogen. Human Reproduction, 13, 3000–3004.CrossRefPubMedGoogle Scholar
  48. Markevych, V., Asbjørnsen, A. E., Lind, O., Plante, E., & Cone, B. (2011). Dichotic listening and otoacoustic emissions: Shared variance between cochlear function and dichotic listening performance in adults with normal hearing. Brain and Cognition, 76, 332–339.CrossRefPubMedGoogle Scholar
  49. Marshall, W. A., & Tanner, J. M. (1969). Variations in pattern of pubertal changes in girls. Archives of Disease in Childhood, 44, 291–303.PubMedCentralCrossRefPubMedGoogle Scholar
  50. Marshall, W. A., & Tanner, J. M. (1970). Variations in the pattern of pubertal changes in boys. Archives of Disease in Childhood, 45, 13–23.PubMedCentralCrossRefPubMedGoogle Scholar
  51. McFadden, D. (1993). A masculinizing effect on the auditory systems of human females having male co-twins. Proceedings of the National Academy of Sciences of the United States of America, 90, 11900–11904.PubMedCentralCrossRefPubMedGoogle Scholar
  52. McFadden, D. (1998). Sex differences in the auditory system. Developmental Neuropsychology, 14, 261–298.CrossRefGoogle Scholar
  53. McFadden, D. (1999). Intersex infants and otoacoustic emissions. Urology, 53, 240.CrossRefPubMedGoogle Scholar
  54. McFadden, D. (2000). Masculinizing effects on otoacoustic emissions and auditory evoked potentials in women using oral contraceptives. Hearing Research, 142, 23–33.CrossRefPubMedGoogle Scholar
  55. McFadden, D., & Champlin, C. A. (2000). Comparison of auditory evoked potentials in heterosexual, homosexual, and bisexual males and females. Journal of the Association for Research in Otolaryngology, 1, 89–99.PubMedCentralCrossRefPubMedGoogle Scholar
  56. McFadden, D., & Loehlin, J. C. (1995). On the heritability of spontaneous otoacoustic emissions: A twins study. Hearing Research, 85(1–2), 181–198.Google Scholar
  57. McFadden, D., Loehlin, J. C., & Pasanen, E. G. (1996). Additional findings on heritability and prenatal masculinization of cochlear mechanisms: Click-evoked otoacoustic emissions. Hearing Research, 97, 102–119.CrossRefPubMedGoogle Scholar
  58. McFadden, D., & Pasanen, E. G. (1998). Comparison of the auditory systems of heterosexuals and homosexuals: Click-evoked otoacoustic emissions. Proceedings of the National Academy of Sciences of the United States of America, 95, 2709–2713.PubMedCentralCrossRefPubMedGoogle Scholar
  59. McFadden, D., & Pasanen, E. G. (1999). Spontaneous otoacoustic emissions in heterosexuals, homosexuals, and bisexuals. Journal of the Acoustical Society of America, 105, 2403–2413.CrossRefPubMedGoogle Scholar
  60. McFadden, D., Pasanen, E. G., Raper, J., Lange, H. S., & Wallen, K. (2006a). Sex differences in otoacoustic emissions measured in rhesus monkeys (Macaca mulatta). Hormones and Behavior, 50, 274–284.CrossRefPubMedGoogle Scholar
  61. McFadden, D., Pasanen, E. G., Valero, M. D., Roberts, E. K., & Lee, T. M. (2009). Effect of prenatal androgens on click-evoked otoacoustic emissions in male and female sheep (Ovis aries). Hormones and Behavior, 55, 98–105.PubMedCentralCrossRefPubMedGoogle Scholar
  62. McFadden, D., Pasanen, E. G., Weldele, M. L., Glickman, S. E., & Place, N. J. (2006b). Masculinized otoacoustic emissions in female spotted hyenas (Crocuta crocuta). Hormones and Behavior, 50, 285–292.CrossRefPubMedGoogle Scholar
  63. McFadden, D., & Shubel, E. (2002). Relative lengths of fingers and toes in human males and females. Hormones and Behavior, 42, 492–500.CrossRefPubMedGoogle Scholar
  64. McFadden, D., & Shubel, E. (2003). The relationships between otoacoustic emissions and relative lengths of fingers and toes in humans. Hormones and Behavior, 43, 421–429.CrossRefPubMedGoogle Scholar
  65. McIntyre, M. H. (2006). The use of digit ratios as markers for perinatal androgen action. Reproductive Biology and Endocrinology, 4, 10. doi: 10.1186/1477-7827-4-10.PubMedCentralCrossRefPubMedGoogle Scholar
  66. McIntyre, M. H., Cohn, B. A., & Ellison, P. T. (2006). Sex dimorphism in digital formulae of children. American Journal of Physical Anthropology, 129, 143–150.CrossRefPubMedGoogle Scholar
  67. Morlet, T., Perrin, E., Durrant, J. D., Lapillonne, A., Ferber, C., Duclaux, R., Putet, G., et al. (1996). Development of cochlear active mechanisms in humans differs between gender. Neuroscience Letters, 220, 49–52.Google Scholar
  68. Moulin, A., Collet, L., Veuillet, E., & Morgon, A. (1993). Interrelations between transiently evoked otoacoustic emissions, spontaneous otoacoustic emissions and acoustic distortion products in normally hearing subjects. Hearing Research, 65, 216–233.CrossRefPubMedGoogle Scholar
  69. Newmark, M., Merlob, P., Bresloff, I., Olsha, M., & Attias, J. (1997). Click evoked otoacoustic emissions: Inter-aural and gender differences in newborns. Journal of Basic and Clinical Physiology and Pharmacology, 8, 133–139.CrossRefPubMedGoogle Scholar
  70. Peters, M., Mackenzie, K., & Bryden, P. (2002). Finger length and distal finger extent patterns in humans. American Journal of Physical Anthropology, 117, 209–217.CrossRefPubMedGoogle Scholar
  71. Pujol, R., & Lavigne-Rebillard, M. (1995). Sensory and neural structures in the developing human cochlea. International Journal of Pediatric Otorhinolaryngology, 32(Suppl.) S177–S182.Google Scholar
  72. Quigley, C. A. (2002). The postnatal gonadotropin and sex steroid surge-insights from the androgen insensitivity syndrome. Journal of Clinical Endocrinology and Metabolism, 87, 24–28.PubMedGoogle Scholar
  73. Resnick, S. M., Gottesman, I. I., & McGue, M. (1993). Sensation seeking in opposite-sex twins: An effect of prenatal hormones? Behavior Genetics, 23, 323–329.CrossRefPubMedGoogle Scholar
  74. Rodenburg, M., & Hanssens, K. (1998). Audiometrie-Methoden en Klinische Toepassingen. Audiometrie (4th ed.). Bussum: Cautinho.Google Scholar
  75. Rohde Parfet, K. A., Lamberson, W. R., Rieke, A. R., Cantley, T. C., Ganjam, V. K., vom Saal, F. S., & Day, B. N. (1990). Intrauterine position effects in male and female swine: Subsequent survivability, growth rate, morphology and semen characteristics. Journal of Animal Science, 68, 179–185.Google Scholar
  76. Ryan, B. C., & Vandenbergh, J. G. (2002). Intrauterine position effects. Neuroscience and Biobehavioral Reviews, 26, 665–678.CrossRefPubMedGoogle Scholar
  77. Saitoh, Y., Sakoda, T., Hazama, M., Funakoshi, H., Ikeda, H., Shibano, A., Yajin, S., et al. (2006). Transient evoked otoacoustic emissions in newborn infants: Effects of ear asymmetry, gender, and age. Journal of Otolaryngology, 35, 133–138.Google Scholar
  78. Schagen, S. E. E., Delemarre-van de Waal, H., Blanchard, R., & Cohen-Kettenis, P. T. (2012). Sibling sex ratio and birth order in early-onset gender dysphoric adolescents. Archives of Sexual Behavior, 41, 541–549.PubMedCentralCrossRefPubMedGoogle Scholar
  79. Schneider, H. J., Pickel, J., & Stalla, G. K. (2006). Typical female 2nd-4th finger length (2D:4D) ratios in male-to-female transsexuals-possible implications for prenatal androgen exposure. Psychoneuroendocrinology, 31, 265–269.CrossRefPubMedGoogle Scholar
  80. Singh, D. (2012). A follow-up study of boys with gender identity disorder. Unpublished doctoral dissertation, University of Toronto.Google Scholar
  81. Sininger, Y. S., & Cone-Wesson, B. (2004). Asymmetric cochlear processing mimics hemispheric specialization. Science, 305(5690), 1581. doi: 10.1126/science.1100646.
  82. Slutske, W. S., Bascom, E. N., Meier, M. H., Medland, S. E., & Martin, N. G. (2011). Sensation seeking in females from opposite- versus same-sex twin pairs: Hormone transfer or sibling imitation? Behavior Genetics, 41, 533–542.CrossRefPubMedGoogle Scholar
  83. Snihur, A. W. K., & Hampson, E. (2011). Individual differences in 2D:4D digit-ratios and otoacoustic emissions: Do they share a common developmental origin? Personality and Individual Differences, 51, 406–411.CrossRefGoogle Scholar
  84. Snihur, A. W. K., & Hampson, E. (2012a). Oral contraceptive use in women is associated with defeminization of otoacoustic emission patterns. Neuroscience, 210, 258–265.CrossRefPubMedGoogle Scholar
  85. Snihur, A. W. K., & Hampson, E. (2012b). Click-evoked otoacoustic emissions: response amplitude is associated with circulating testosterone levels in men. Behavioral Neuroscience, 126, 325–331.CrossRefPubMedGoogle Scholar
  86. Steensma, T. D., Biemond, R., de Boer, F., & Cohen-Kettenis, P. T. (2011). Desisting and persisting gender dysphoria after childhood: A qualitative follow-up study. Clinical Child Psychology and Psychiatry, 16, 499–516.CrossRefPubMedGoogle Scholar
  87. Strickland, E. A., Burns, E. M., & Tubis, A. (1985). Incidence of spontaneous otoacoustic emissions in children and infants. Journal of the Acoustical Society of America, 78, 931–935.CrossRefPubMedGoogle Scholar
  88. Swaab, D. F. (2007). Sexual differentiation of the brain and behavior. Best Practice & Research. Clinical Endocrinology & Metabolism, 21, 431–444.CrossRefGoogle Scholar
  89. Thornton, A. R. D., Marotta, N., & Kennedy, C. R. (2003). The order of testing effect in otoacoustic emissions and its consequences for sex and ear differences in neonates. Hearing Research, 184, 123–130.CrossRefPubMedGoogle Scholar
  90. Ujike, H., Otani, K., Nakatsuka, M., Ishii, K., Sasaki, A., Oishi, T., et al. (2009). Association study of gender identity disorder and sex hormone-related genes. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33, 1241–1244.CrossRefPubMedGoogle Scholar
  91. Van Goozen, S. H. M., Slabbekoorn, D., Gooren, L. J. G., Sanders, G., & Cohen-Kettenis, P. T. (2002). Organizing and activating effects of sex hormones in homosexual transsexuals. Behavioral Neuroscience, 116, 982–988.CrossRefPubMedGoogle Scholar
  92. Vom Saal, F. S. (1989). Sexual differentiation in litter-bearing mammals: Influence of sex of adjacent fetuses in utero. Journal of Animal Science, 67, 1824–1840.PubMedGoogle Scholar
  93. Vuoksimaa, E., Kaprio, J., Kremen, W. S., Hokkanen, L., Viken, R. J., Tuulio-Henriksson, A., & Rose, R. J. (2010). Having a male co-twin masculinizes mental rotation performance in females. Psychological Science, 21, 1069–1071.Google Scholar
  94. Wallien, M. S. C., & Cohen-Kettenis, P. T. (2008). Psychosexual outcome of gender-dysphoric children. Journal of the American Academy of Child and Adolescent Psychiatry, 47, 1413–1423.CrossRefPubMedGoogle Scholar
  95. Wallien, M. S. C., Zucker, K. J., Steensma, T. D., & Cohen-Kettenis, P. T. (2008). 2D:4D finger-length ratios in children and adults with gender identity disorder. Hormones and Behavior, 54, 450–454.CrossRefPubMedGoogle Scholar
  96. Williams, T. J., Pepitone, M. E., Christensen, S. E., Cooke, B. M., Huberman, A. D., Breedlove, N. J., Breedlove, T. J., et al. (2000). Finger-length ratios and sexual orientation. Nature, 404, 455–456.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sarah M. Burke
    • 1
    • 2
  • Willeke M. Menks
    • 1
    • 2
  • Peggy T. Cohen-Kettenis
    • 1
  • Daniel T. Klink
    • 3
  • Julie Bakker
    • 1
    • 2
    • 4
  1. 1.Center of Expertise on Gender Dysphoria, Department of Medical PsychologyVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Netherlands Institute for NeuroscienceAmsterdamThe Netherlands
  3. 3.Department of PediatricsVU University Medical CenterAmsterdamThe Netherlands
  4. 4.GIGA NeuroscienceUniversity of LiegeLiegeBelgium

Personalised recommendations