Archives of Sexual Behavior

, Volume 42, Issue 3, pp 487–499 | Cite as

The Validity of Implicit Association Test (IAT) Measures of Sexual Attraction to Children: A Meta-Analysis

  • Kelly M. Babchishin
  • Kevin L. Nunes
  • Chantal A. Hermann
Original Paper


The current study presents a quantitative review of the discriminative and convergent validity of Implicit Association Test (IAT) measures adapted to assess sexual interest in children. IAT measures were able to distinguish sex offenders against children (SOC) from non-SOC (M weighted d from random-effects = 0.63, 95 % CI [0.42–0.83], N = 707, k = 12). The largest group differences were found between SOC and non-offenders, followed by non-sex offenders and rapists. IAT measures using sex versus not sex (and similar attribute categories, such as sex vs. neutral) provided superior discrimination compared to IAT measures using sexy versus not sexy (and similar attribute categories, such as erotic vs. non-erotic). The IAT measures had a moderate relationship to self-report (r = .27, 95 % CI [.13–.40], N = 182), sexual offense history variables (r = .27, 95 % CI [.08–.43], N = 145), and viewing time (r = .30, 95 % CI [.16–.43], N = 180) measures of sexual interest in children. Although these IAT measures can discriminate between groups and show convergence with other measures of sexual interest, a better understanding of the construct validity of these tools is required before their use in the assessment, treatment, and supervision of sex offenders.


Sexual interest Pedophilia Implicit Association Test Meta-analysis 


  1. Reference marked with an asterisk was used in the meta-analysis. Google Scholar
  2. *Babchishin, K. M., Nunes, K. L., & Kessous, N. (2011). A multimodal examination of sexual interest in children. Manuscript submitted for publication.Google Scholar
  3. *Banse, R., Schmidt, A. F., & Clarbour, J. (2010). Indirect measures of sexual interest in child sex offenders: A multimethod approach. Criminal Justice and Behavior, 37, 319–335. doi:10.1177/0093854809357598.
  4. Barsetti, I., Earls, C. M., Lalumière, M. L., & Bélanger, N. (1998). The differentiation of intrafamilial and extrafamilial heterosexual child molesters. Journal of Interpersonal Violence, 13, 275–286. doi:10.1177/088626098013002007.CrossRefGoogle Scholar
  5. Beitchman, J. H., Zucker, K. J., Hood, J. E., DaCosta, G. A., Akman, D., & Cassavia, E. (1992). A review of the long-term effects of child sexual abuse. Child Abuse and Neglect, 16, 101–118. doi:10.1016/0145-2134(92)90011-F.PubMedCrossRefGoogle Scholar
  6. Blanchard, R., Klassen, P., Dickey, R., Kuban, M. E., & Blak, T. (2001). Sensitivity and specificity of the phallometric test for pedophilia in nonadmitting sex offenders. Psychological Assessment, 13, 118–126. doi:10.1037/1040-3590.13.1.118.PubMedCrossRefGoogle Scholar
  7. Borenstein, M., Hedges, L., Higgins, J., & Rothstein, H. R. (2005). Comprehensive meta-analysis (Version 2). Englewood, NJ: Biostat, Inc.Google Scholar
  8. *Brown, A., Gray, N. S., & Snowden, R. J. (2009). Implicit measurement of sexual preferences in child sex abusers. Sexual Abuse: A Journal of Research and Treatment, 21, 166–180. doi:10.1177/1079063209332234.Google Scholar
  9. Browne, A., & Finkelhor, D. (1986). Impact of child sexual abuse: A review of the research. Psychological Bulletin, 99, 66–77. doi:10.1037/0033-2909.99.1.66.PubMedCrossRefGoogle Scholar
  10. Canales, D. D., Olver, M. E., & Wong, S. C. P. (2009). Construct validity of the violence risk scale-sexual offender version for measuring sexual deviance. Sexual Abuse: A Journal of Research and Treatment, 21, 474–492. doi:10.1177/1079063209344990.Google Scholar
  11. Chivers, M. L., Seto, M. C., Lalumière, M. L., Laan, E., & Grimbos, T. (2010). Agreement of self-reported and genital measures of sexual arousal in men and women: A meta-analysis. Archives of Sexual Behaviors, 39, 5–56. doi:10.1007/s10508-009-9556-9.CrossRefGoogle Scholar
  12. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
  13. Cumming, G., & Finch, S. (2005). Inference by eye: Confidence intervals, and how to read pictures of data. American Psychologist, 60, 170–180. doi:10.1037/0003-066X.60.2.170.PubMedCrossRefGoogle Scholar
  14. Cunningham, W. A., Preacher, K. J., & Banaji, M. R. (2001). Implicit attitude measures: Consistency, stability, and convergent validity. Psychological Science, 121, 163–170. doi:10.1111/1467-9280.00328.CrossRefGoogle Scholar
  15. Cvencek, D., Greenwald, A. G., Brown, A., Snowden, R., & Gray, N. (2010). Faking of the Implicit Association Test is statistically detectable and partly correctable. Basic and Applied Social Psychology, 32, 302–314. doi:10.1177/1079063209332234.CrossRefGoogle Scholar
  16. Fazio, R. H., & Olson, M. A. (2003). Implicit measures in social cognition research: Their meaning and use. Annual Review of Psychology, 54, 297–327. doi:10.1146/annurev.psych.54.101601.145225.PubMedCrossRefGoogle Scholar
  17. Feinstein, A. R., & Cicchetti, D. V. (1990). High agreement but low kappa: The problems of two paradoxes. Journal of Clinical Epidemiology, 43, 543–549. doi:10.1016/0895-4356.PubMedCrossRefGoogle Scholar
  18. Finkelhor, D. (1984). Child sexual abuse: New theory and research. New York: Free Press.Google Scholar
  19. Finkelhor, D. (1994). Current information on the scope and nature of child sexual abuse. The Future of Children, 4, 31–53. doi:10.2307/1602522.PubMedCrossRefGoogle Scholar
  20. Freund, K., & Watson, R. J. (1991). Assessment of the sensitivity and specificity of a phallometric test: An update of phallometric diagnosis of pedophilia. Psychological Assessment, 3, 254–260. doi:10.1037/1040-3590.3.2.254.CrossRefGoogle Scholar
  21. Gannon, T. A., Keown, K., & Polaschek, D. L. L. (2007). Increasing honest responding on cognitive distortions in child molesters: The bogus pipeline revisited. Sexual Abuse: A Journal of Research and Treatment, 19, 5–22. doi:10.1177/107906320701900103.Google Scholar
  22. Gannon, T. A., Ward, T., & Collie, R. (2007). Cognitive distortions in child molesters: Theoretical and research developments over the past two decades. Aggression and Violent Behavior, 12, 402–416. doi:10.1016/j.avb.2006.09.005.CrossRefGoogle Scholar
  23. Gawronski, B., & Bodenhausen, G. V. (2006). Associative and propositional processes in evaluation: An integrative review of implicit and explicit attitude change. Psychological Bulletin, 132, 692–731. doi:10.1037/0033-2909.132.5.692.PubMedCrossRefGoogle Scholar
  24. *Gray, N. S., Brown, A. S., MacCulloch, M. J., Smith, J., & Snowden, R. J. (2005). An Implicit Association Test of the associations between children and sex in pedophiles. Journal of Abnormal Psychology, 114, 304–308. doi:10.1037/0021-843X.114.2.304.
  25. Greenwald, A. G. (2004, January). Revised top 10 list of things wrong with the IAT. Invited presentation at Attitudes Preconference of the 5th annual meeting of the Society of Personality and Social Psychology, Austin, TX.Google Scholar
  26. Greenwald, A. G., & Banaji, M. R. (1995). Implicit social cognition: Attitudes, self-esteem, and stereotypes. Psychological Review, 102, 4–27. doi:10.1037/0033-295X.102.1.4.PubMedCrossRefGoogle Scholar
  27. Greenwald, A. G., & Farnham, S. D. (2000). Using the Implicit Association Test to measure self-esteem and self-concept. Journal of Personality and Social Psychology, 79, 1022–1038. doi:10.1037//0022-3514.79.6.1022.PubMedCrossRefGoogle Scholar
  28. Greenwald, A. G., McGhee, D. E., & Schwartz, J. L. K. (1998). Measuring individual differences in implicit cognition: The Implicit Association Test. Journal of Personality and Social Psychology, 74, 1464–1480. doi:10.1037//0022-3514.74.6.1464.PubMedCrossRefGoogle Scholar
  29. Greenwald, A. G., Nosek, B. A., & Banaji, M. R. (2003). Understanding and using the Implicit Association Test: I. An improved scoring algorithm. Journal of Personality and Social Psychology, 85, 197–216. doi:10.1037/0022-3514.85.2.197.PubMedCrossRefGoogle Scholar
  30. Hall, G. C. N., & Hirschman, R. (1992). Sexual aggression against children: A conceptual perspective of etiology. Criminal Justice and Behavior, 19, 8–23. doi:10.1177/0093854892019001003.CrossRefGoogle Scholar
  31. Hanson, R. K., & Morton-Bourgon, K. (2004). Predictors of sexual recidivism: An updated meta-analysis (User Report #2004-02). Ottawa, ON: Public Safety and Emergency Preparedness Canada.Google Scholar
  32. Hanson, R. K., & Thornton, D. (2000). Improving risk assessments for sex offenders: A comparison of three actuarial scales. Law and Human Behavior, 24, 119–136. doi:10.1023/A:1005482921333.PubMedCrossRefGoogle Scholar
  33. Harris, G. T., Rice, M. E., Cormier, C. A., & Quinsey, V. L. (1998). Dissimulation in phallometric testing of rapists’ sexual preferences. Archives of Sexual Behavior, 28, 223–232. doi:0004-0002/99/0600-0223.CrossRefGoogle Scholar
  34. Harris, G. T., Rice, M. E., Quinsey, V. L., & Chaplin, T. C. (1996). Viewing time as a measure of sexual interest among child molesters and normal heterosexual men. Behaviour Research and Therapy, 34, 389–394. doi:10.1016/0005-7967(95)00070-4.PubMedCrossRefGoogle Scholar
  35. Hasselblad, V., & Hedges, L. V. (1995). Meta-analysis of screening and diagnostic tests. Psychological Bulletin, 117, 167–178. doi:10.1037/0033-2909.117.1.167.PubMedCrossRefGoogle Scholar
  36. Hedges, L. V. (1982). Fitting continuous models to effect size data. Journal of Educational Statistics, 7, 245–270. doi:10.3102/10769986007004245.CrossRefGoogle Scholar
  37. Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. New York: Academic Press.Google Scholar
  38. Hedges, L. V., & Vevea, J. L. (1998). Fixed- and random-effects models in meta-analysis. Psychological Methods, 3, 486–504. doi:10.1037/1082-989X.3.4.486.CrossRefGoogle Scholar
  39. Helmus, L., Thornton, D., Hanson, R. K., & Babchishin, K. M. (2012). Improving the predictive accuracy of Static-99 and Static-2002 with older sex offenders: Revised age weights. Sexual Abuse: A Journal of Research and Treatment, 24, 64–101. doi:10.1177/1079063211409951.Google Scholar
  40. Higgins, J. P. T., & Thompson, S. G. (2004). Controlling the risk of spurious findings from meta-regression. Statistics in Medicine, 23, 1663–1682. doi:10.1002/sim.1752.PubMedCrossRefGoogle Scholar
  41. Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. British Medical Journal, 327, 557–560. doi:10.1136/bmj.327.7414.557.PubMedCrossRefGoogle Scholar
  42. Horley, J. (2000). Cognitions supportive of child molestation. Aggression and Violent Behavior, 5, 551–564. doi:10.1016/S1359-1789(98)00042-1.CrossRefGoogle Scholar
  43. Jajodia, A., & Earleywine, M. (2003). Measuring alcohol expectancies with the Implicit Association Test. Psychology of Addictive Behaviors, 17, 126–133. doi:10.1037/0893-164X.17.2.126.PubMedCrossRefGoogle Scholar
  44. Kalmus, E., & Beech, A. R. (2005). Forensic assessment of sexual interest: A review. Aggression and Violent Behavior, 10, 193–217. doi:10.1016/j.avb.2003.12.002.CrossRefGoogle Scholar
  45. Kazdin, A. E. (2003). Research design in clinical psychology (4th ed.). Boston: Allyn and Bacon.Google Scholar
  46. Kim, D. Y. (2003). Voluntary controllability of the Implicit Association Test (IAT). Social Psychology Quarterly, 66, 83–96. doi:10.2307/3090143.CrossRefGoogle Scholar
  47. Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174. doi:10.2307/2529310.PubMedCrossRefGoogle Scholar
  48. Launay, G. (1999). The phallometric assessment of sex offenders: An update. Criminal behaviour and Mental Health, 9, 254–274. doi:10.1002/cbm.317.CrossRefGoogle Scholar
  49. Laws, D. R. (1986). Sexual deviance card sort. Unpublished manuscript, Florida Mental Health Institute, Tampa, FL.Google Scholar
  50. Lipsey, M. W. (2003). Those confounded moderators in meta-analysis: Good, bad, and ugly. Annals of the American Academy of Political and Social Science, 587, 69–81. doi:10.1177/0002716202250791.CrossRefGoogle Scholar
  51. Looman, J., & Marshall, W. L. (2001). Phallometric assessments designed to detect arousal to children: The responses of rapists and child molesters. Sexual Abuse: A Journal of Research and Treatment, 13, 3–13. doi:10.1177/107906320101300102.Google Scholar
  52. Marshall, W. L., Anderson, D., & Fernandez, Y. (1999). Cognitive behavioral treatment of sexual offenders. New York: Wiley.Google Scholar
  53. Marshall, W. L., & Eccles, A. (1991). Issues in clinical practice with sex offenders. Journal of Interpersonal Violence, 6, 68–93. doi:10.1177/088626091006001006.CrossRefGoogle Scholar
  54. Marshall, W. L., & Fernandez, Y. M. (2000). Phallometric testing with sexual offenders: Limits to its value. Clinical Psychology Review, 20, 807–822. doi:10.1016/S0272-7358(99)00013-6.PubMedCrossRefGoogle Scholar
  55. *Mihailides, S., Devilly, G. J., & Ward, T. (2004). Implicit cognitive distortions and sexual offending. Sexual Abuse: A Journal of Research and Treatment, 16, 333–350. doi:10.1023/B:SEBU.0000043327.10168.5b.
  56. Nichols, H. R., & Molinder, I. (2000). Multiphasic Sex Inventory (2nd ed.). Tacoma, WA: Crime and Victim Psychology Specialists.Google Scholar
  57. Nosek, B. A., Greenwald, A. G., & Banaji, M. R. (2005). Understanding and using the Implicit Association Test: II. Method variables and construct validity. Personality and Social Psychology Bulletin, 31, 166–180. doi:10.1177/0146167204271418.PubMedCrossRefGoogle Scholar
  58. Nosek, B. A., Greenwald, A. G., & Banaji, M. R. (2007). The Implicit Association Test at age 7: A methodological and conceptual review. In J. A. Bargh (Ed.), Automatic processes in social thinking and behavior (pp. 265–292). New York: Psychology Press.Google Scholar
  59. Nosek, B. A., & Smyth, F. L. (2007). A multitrait–multimethod validation of the Implicit Association Test. Experimental Psychology, 54, 14–29. doi:10.1027/1618-3169.54.1.14.PubMedCrossRefGoogle Scholar
  60. *Nunes, K. L., Firestone, P., & Baldwin, M. W. (2007). Indirect assessment of cognitions of child sexual abusers with the Implicit Association Test. Criminal Justice and Behavior, 34, 454–475. doi:10.1177/0093854806291703.
  61. *Ó Ciardha, C. (2009). Uses of implicit cognitive measures in the assessment of sex offenders. Unpublished doctoral dissertation, Trinity College, Dublin.Google Scholar
  62. Ó Ciardha, C. (2011). A theoretical framework for understanding deviant sexual interest and cognitive distortions as overlapping constructs contributing to sexual offending against children. Aggression and Violent Behavior, 16, 493–502. doi:10.1016/j.avb.2011.05.001.CrossRefGoogle Scholar
  63. Olson, M. A., & Fazio, R. H. (2009). Implicit and explicit measures of attitudes: The perspective of the MODE model. In R. E. Petty, R. H. Fazio, & P. Briñol (Eds.), Attitudes: Insights from the new implicit measures (pp. 19–63). New York: Psychology Press.Google Scholar
  64. Orwin, R. (1983). A fail-safe N for effect size in meta-analysis. Journal of Educational Statistics, 8, 157–159. doi:10.3102/10769986008002157.CrossRefGoogle Scholar
  65. Paolucci, E. O., Genuis, M. L., & Violato, C. (2001). A meta-analysis of the published research on the effects of child sexual abuse. Journal of Psychology, 135, 17–36. doi:10.1080/00223980109603677.PubMedCrossRefGoogle Scholar
  66. Poehlman, T. A., Uhlmann, E. L., Greenwald, A. G., & Banaji, M. R. (2009). Understanding and using the Implicit Association Test: III. Meta-analysis of predictive validity. Journal of Personality and Social Psychology, 97, 17–41. doi:10.1037/a0015575.PubMedCrossRefGoogle Scholar
  67. Rice, M. E., & Harris, G. T. (2005). Comparing effect sizes in follow-up studies: ROC area, Cohen’s d, and r. Law and Human Behavior, 29, 615–620. doi:10.1007/s10979-005-6832-7.PubMedCrossRefGoogle Scholar
  68. *Schmidt, A. F., & Banse, R. (2010, July). Indirect measures of sexual interest in child sex offenders: A multimethod approach and its clinical implications. Paper presented at the International Summer Conference in Forensic Psychiatry, Regensburg.Google Scholar
  69. *Schmidt, A. F., Gykiere, K., Vanhoeck, K., Mann, R. E., & Banse, R. (2011). Direct and indirect measures of sexual maturity preferences differentiate subtypes of child sex abusers. Manuscript submitted for publication.Google Scholar
  70. Schmidt, F. L., Oh, I., & Hayes, T. L. (2009). Fixed- versus random-effects models in meta-analysis: Model properties and an empirical comparison of differences in results. British Journal of Mathematical and Statistical Psychology, 62, 97–128. doi:10.1348/000711007X255327.PubMedCrossRefGoogle Scholar
  71. Seto, M. C. (2004). Pedophilia and sexual offenses against children. Annual Review of Sex Research, 15, 321–361. doi:10.1146/annurev.clinpsy.032408.153618.PubMedGoogle Scholar
  72. Seto, M. C. (2008). Pedophilia and sexual offending against children: Theory, assessment, and intervention. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  73. Seto, M. C., & Lalumière, M. L. (2001). A brief screening scale to identify pedophilic interests among child molesters. Sexual Abuse: A Journal of Research and Treatment, 13, 15–25. doi:10.1023/A:1009510328588.Google Scholar
  74. Seto, M. C., Murphy, W. D., Page, J., & Ennis, L. (2003). Detecting anomalous sexual interests in juvenile sex offenders. Annals of the New York Academy of Sciences, 989, 118–130. doi:10.1111/j.1749-6632.2003.tb07298.x.PubMedCrossRefGoogle Scholar
  75. Snowden, R. J., Craig, R. L., & Gray, N. S. (2011). Indirect behavioral measures of cognition among sexual offenders. Journal of Sex Research, 48, 192–217. doi:10(1080/00224499),2011,557750.PubMedCrossRefGoogle Scholar
  76. Spiering, M., & Everaerd, W. (2007). The sexual unconscious. In E. Janssen (Ed.), The psychophysiology of sex (pp. 166–184). Bloomington, IN: Indiana University Press.Google Scholar
  77. *Steffens, M. C., Yundina, E., & Panning, M. (2008). Automatic associations with “erotic” in child sexual offenders: Identifying those in danger of reoffence. Sexual Offender Treatment, 3, 1–9.Google Scholar
  78. *Thornton, D., McKee, R., & Ó Ciardha, C. (2009, October). Convergent and divergent validity of implicit measures of sexual interest among SVPs. Paper presented at the meeting of the Association for the Treatment of Sexual Abuse, Dallas, TX.Google Scholar
  79. Tryon, W. W. (2001). Evaluating statistical significance difference, equivalence, and indeterminacy using inferential confidence intervals: An integrated alternative method of conducting null hypothesis statistical tests. Psychological Methods, 6, 371–386. doi:10.1037//1082-989x.6.4.371.PubMedCrossRefGoogle Scholar
  80. *van Leeuwen, M. L., van Baaren, R. B., Chakhssi, F., Loonen, M. G. M., Lippman, M., & Dijksterhuis, A. (2011). Detecting implicit associations in non-incarcerated pedophiles: Exploring generalizability, specificity and behavior predictability. Manuscript submitted for publication.Google Scholar
  81. Ward, T., & Beech, A. (2006). An integrated theory of sexual offending. Aggression and Violent Behavior, 11, 44–63. doi:10.1016/j.avb.2005.05.002.CrossRefGoogle Scholar
  82. Ward, T., Hudson, S. M., Johnston, L., & Marshall, W. L. (1997). Cognitive distortions in sex offenders: An integrative review. Clinical Psychology Review, 17, 479–507. doi:10.1016/S0272-7358(97)81034-3.PubMedCrossRefGoogle Scholar
  83. Wormith, J. S. (1986). Assessing deviant sexual arousal: Physiological and cognitive aspects. Advances in Behaviour Research & Therapy, 8, 101–137. doi:10.1016/0146-6402(86)90001-9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Kelly M. Babchishin
    • 1
  • Kevin L. Nunes
    • 1
  • Chantal A. Hermann
    • 1
  1. 1.Department of PsychologyCarleton UniversityOttawaCanada

Personalised recommendations