Archives of Sexual Behavior

, Volume 40, Issue 5, pp 921–926 | Cite as

Salivary Testosterone Levels in Men at a U.S. Sex Club

  • Michelle J. Escasa
  • Jacqueline F. Casey
  • Peter B. Gray
Original Paper

Abstract

Vertebrate males commonly experience elevations in testosterone levels in response to sexual stimuli, such as presentation of a novel mating partner. Some previous human studies have shown that watching erotic movies increases testosterone levels in males although studies measuring testosterone changes during actual sexual intercourse or masturbation have yielded mixed results. Small sample sizes, “unnatural” lab-based settings, and invasive techniques may help account for mixed human findings. Here, we investigated salivary testosterone levels in men watching (n = 26) versus participating (n = 18) in sexual activity at a large U.S. sex club. The present study entailed minimally invasive sample collection (measuring testosterone in saliva), a naturalistic setting, and a larger number of subjects than previous work to test three hypotheses related to men’s testosterone responses to sexual stimuli. Subjects averaged 40 years of age and participated between 11:00 pm and 2:10 am. Consistent with expectations, results revealed that testosterone levels increased 36% among men during a visit to the sex club, with the magnitude of testosterone change significantly greater among participants (72%) compared with observers (11%). Contrary to expectation, men’s testosterone changes were unrelated to their age. These findings were generally consistent with vertebrate studies indicating elevated male testosterone in response to sexual stimuli, but also point out the importance of study context since participation in sexual behavior had a stronger effect on testosterone increases in this study but unlike some previous human lab-based studies.

Keywords

Sexual activity Sexual function Androgens Challenge hypothesis 

References

  1. Aikey, J. L., Nyby, J. G., Anmuth, M., & James, P. J. (2002). Testosterone rapidly reduces anxiety in male house mice (Mus musculus). Hormones and Behavior, 42, 448–460.PubMedCrossRefGoogle Scholar
  2. Andersson, M. (1994). Sexual selection. Princeton, NJ: Princeton University Press.Google Scholar
  3. Archer, J. (2006). Testosterone and human aggression: An evaluation of the “Challenge Hypothesis”. Neuroscience and Biobehavioral Reviews, 30, 319–345.PubMedCrossRefGoogle Scholar
  4. Axelsson, J., Ingre, M., Akerstedt, T., & Holmback, U. (2005). Effects of acutely displaced sleep on testosterone. Journal of Clinical Endocrinology and Metabolism, 90, 4530–4535.PubMedCrossRefGoogle Scholar
  5. Bateman, A. J. (1948). Intrasexual selection in Drosophila. Heredity, 2, 349–368.PubMedCrossRefGoogle Scholar
  6. Bribiescas, R. G. (2006). Men: Evolutionary and life history. Cambridge, MA: Harvard University Press.Google Scholar
  7. Daly, M., & Wilson, M. (1988). Homicide. New York: Aldine.Google Scholar
  8. Dixson, A. F. (2009). Sexual selection and the origins of human mating systems. New York: Oxford University Press.Google Scholar
  9. Ford, C. S., & Beach, F. A. (1951). Patterns of sexual behavior. New York: Ace Books.Google Scholar
  10. Gleason, E. D., Fuxjager, M. J., Oyegbile, T. O., & Marler, C. A. (2009). Testosterone release and social context: When it occurs and why. Frontiers in Neuroendocrinology, 30, 460–469.PubMedCrossRefGoogle Scholar
  11. Gray, P. B., & Anderson, K. G. (2010). Fatherhood: Evolution and human paternal behavior. Cambridge, MA: Harvard University Press.Google Scholar
  12. Gray, P. B., & Campbell, B. C. (2009). Human male testosterone, pair bonds and fatherhood. In P. T. Ellison & P. B. Gray (Eds.), Endocrinology of social relationships (pp. 270–293). Cambridge, MA: Harvard University Press.Google Scholar
  13. Hirschenhauser, K., & Oliveira, R. F. (2006). Social modulation of androgens in male vertebrates: Meta-analyses of the Challenge Hypothesis. Animal Behaviour, 71, 265–277.CrossRefGoogle Scholar
  14. Isidori, A. M., Giannetta, E., Gianfrilli, D., Greco, E. A., Bonifacio, V., Aversa, A., et al. (2005). Effects of testosterone on sexual function in men: Results of a meta-analysis. Clinical Endocrinology, 63, 381–394.PubMedCrossRefGoogle Scholar
  15. Nyby, J. G. (2008). Reflexive testosterone release: A model system for studying the nongenomic effects of testosterone upon male behavior. Frontiers in Neuroendocrinology, 29, 199–210.PubMedCrossRefGoogle Scholar
  16. Packard, M. G., Schroeder, J. P., & Alexander, G. M. (1998). Expression of testosterone conditioned place preference is blocked by peripheral or intraaccumbens injection of α-flupenthixol. Hormones and Behavior, 34, 39–47.PubMedCrossRefGoogle Scholar
  17. Roney, J. R., Lukaszewski, A. W., & Simmons, Z. L. (2007). Rapid endocrine responses of young men to social interactions with young women. Hormones and Behavior, 52, 326–333.PubMedCrossRefGoogle Scholar
  18. Rupprecht, R. (2003). Neuroactive steroids: Mechanisms of action and neuropsychopharmacological properties. Psychoneuroendocrinology, 28, 139–168.PubMedCrossRefGoogle Scholar
  19. Travison, T. G., Morley, J. E., Araujo, A. B., O’Donnell, A. B., & McKinlay, J. B. (2006). The relationship between libido and testosterone levels in aging men. Journal of Clinical Endocrinology and Metabolism, 91, 2509–2531.PubMedCrossRefGoogle Scholar
  20. Trivers, R. (1972). Parental investment and sexual selection. In B. C. Campbell (Ed.), Sexual selection and the descent of man (pp. 136–179). Chicago: Aldine.Google Scholar
  21. van Anders, S. M., & Gray, P. B. (2007). Hormones and human partnering. Annual Review of Sex Research, 18, 60–93.Google Scholar
  22. van Anders, S. M., & Watson, N. V. (2006). Social neuroendocrinology: Effects of social contexts and behaviors on sex steroids in humans. Human Nature, 17, 212–237.CrossRefGoogle Scholar
  23. Wingfield, J. C., Hegner, R. E., Dufty, A. M., & Ball, G. F. (1990). The “challenge hypothesis”: Theoretical implications for patterns of testosterone secretion, mating systems, and breeding systems. American Naturalist, 136, 829–846.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Michelle J. Escasa
    • 1
  • Jacqueline F. Casey
    • 1
  • Peter B. Gray
    • 1
  1. 1.Department of AnthropologyUniversity of NevadaLas VegasUSA

Personalised recommendations