Skip to main content

Postnatal Testosterone Levels and Temperament in Early Infancy

Abstract

Recent research showing associations between behavior and postnatal testosterone levels in male infants has suggested that the transient activation of the hypothalamic-pituitary-gonadal axis in early infancy may influence the expression of gender phenotypes in later development (i.e., the postnatal hormone hypothesis). As a further test of the relationship between postnatal hormones and behavior in infancy, we measured digit ratios and salivary testosterone in 76 male and female infants (3–4 months of age) and parents completed the Infant Behavior Questionnaire-Revised, a well-established measure of temperament in the first year of life. Consistent with our earlier findings, there were no significant sex differences in salivary testosterone levels and testosterone levels were unrelated to measures of behavior in female infants. However, in male infants, higher androgen levels predicted greater Negative Affectivity. Further examination of the four scales contributing to the measure of Negative Affectivity showed testosterone levels were a significant predictor of scores on the Distress to Limitations scale, but not of scores on Fear, Sadness, or Reactivity scales. This sex-specific association between salivary testosterone and behavior in infants is consistent with animal research showing higher prenatal androgens associated with typical male development lower the threshold of sensitivity to endogenous testosterone in postnatal life. In sum, these data provide additional support for the postnatal hormone hypothesis and suggest postnatal testosterone levels may influence the development of emotional regulation in male infants.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Alexander, G. M., Wilcox, T., & Farmer, M.-B. (2009). Hormone-behavior associations in early infancy. Hormones and Behavior, 56, 498–502.

    PubMed  Article  Google Scholar 

  • Andersson, A. M., Toppari, J., Haavisto, A. M., Petersen, J. H., Simell, T., Simell, O., et al. (1998). Longitudinal reproductive hormone profiles in infants: Peak of inhibin B levels in infant boys exceeds levels in adult men. Journal of Clinical Endocrinology and Metabolism, 83, 675–681.

    PubMed  Article  Google Scholar 

  • Arregger, A. L., Contreras, L. N., Tumilasci, O. R., Aquilano, D. R., & Cardoso, E. M. (2007). Salivary testosterone: A reliable approach to the diagnosis of male hypogonadism. Clinical Endocrinology, 67, 656–662.

    PubMed  Article  Google Scholar 

  • Baum, M. J., Erskine, M. S., Kornberg, E., & Weaver, C. E. (1990). Prenatal and neonatal testosterone exposure interact to affect differentiation of sexual behavior and partner preference in female ferrets. Behavioral Neuroscience, 1990, 183–198.

    Article  Google Scholar 

  • Benenson, J. F., Duggan, V., & Markovits, H. (2004). Sex differences in infants’ attraction to group versus individual stimuli. Infant Behavior and Development, 27, 173–180.

    Article  Google Scholar 

  • Berenbaum, S. A., & Hines, M. (1992). Early androgens are related to childhood sex-typed toy preferences. Psychological Science, 3, 203–206.

    Article  Google Scholar 

  • Bergman, K., Glover, V., Sarkar, P., Abbott, D. H., & O’Connor, T. G. (2010). In utero cortisol and testosterone exposure and fear reactivity in infancy. Hormones and Behavior, 57, 306–312.

    PubMed  Article  Google Scholar 

  • Boas, M., Boisen, K. A., Virtanen, H. E., Kaleva, M., Suomi, A.-M., Schmidt, I. M., et al. (2006). Postnatal penile length and growth rate correlate to serum testosterone levels: A longitudinal study of 1962 normal boys. European Journal of Endocrinology, 154, 125–129.

    PubMed  Article  Google Scholar 

  • Breedlove, S. M., Cooke, B. M., & Jordan, C. L. (1999). The orthodox view of brain sexual differentiation. Brain, Behavior and Evolution, 54, 8–14.

    PubMed  Article  Google Scholar 

  • Cahill, L., Haier, R. J., White, N. S., Fallon, J., Kilpatrick, L., Lawrence, C., et al. (2001). Sex-related difference in amygdala activity during emotionally influenced memory storage. Neurobiology of Learning and Memory, 75, 1–9.

    PubMed  Article  Google Scholar 

  • Calkins, S. D., Dedmon, S. E., Gill, K. L., Lomax, L. E., & Johnson, L. M. (2002). Frustration in infancy: Implications for emotion regulation, physiological processes, and temperament. Infancy, 3, 175–197.

    Article  Google Scholar 

  • Campbell, D. W., & Eaton, W. O. (1999). Sex differences in the activity level of infants. Infant & Child Development, 8, 1–17.

    Article  Google Scholar 

  • Carson, D. J., Okuno, A., Lee, P. A., Stetton, G., Didolkar, S. M., & Migeon, C. J. (1982). Amniotic fluid steroid levels: Fetuses with adrenal hyperplasia, 46, XXY fetuses, and normal fetuses. American Journal of Diseases of Children, 136, 218–222.

    PubMed  Google Scholar 

  • Cohen, J. (1977). Statistical analysis for the behavioral sciences. New York: Academic Press.

    Google Scholar 

  • Collaer, M. L., Brook, C. G. D., Conway, G. S., Hindmarsh, P. C., & Hines, M. (2009). Motor development in individuals with congential adrenal hyperplasia: Stregnth, targeting, and fine motor skill. Psychoneuroendocrinology, 34, 249–258.

    PubMed  Article  Google Scholar 

  • Cooke, B. M., Tabibnia, G., & Breedlove, S. M. (1999). A brain sexual dimorphism controlled by adult circulating androgens. Proceedings of the National Academy of Sciences of the United States of America, 96, 7538–7540.

    PubMed  Article  Google Scholar 

  • Crockenberg, S. C., Leerkes, E. M., & Barrig Jo, P. S. (2008). Predicting aggressive behavior in the third year from infant reactivity and regulation as moderated by maternal behavior. Development and Psychopathology, 20, 37–54.

    PubMed  Article  Google Scholar 

  • Davis, M., & Emory, E. (1995). Sex differences in neonatal stress reactivity. Child Development, 66, 14–27.

    PubMed  Article  Google Scholar 

  • de Ronde, W., van der Schouw, Y. T., Pierik, F. H., Pols, H. A., Muller, J., Grobbee, D. E., et al. (2005). Serum levels of sex hormone-binding globulin (SHBD) are not associated with lower levels of non-SHBG-bound testosterone in male newborns and healthy men. Clinical Endocrinology, 62, 498–503.

    PubMed  Article  Google Scholar 

  • Derntl, B., Windischberger, C., Robinson, S., Kryspin-Exner, I., Gur, R. C., Moser, E., et al. (2009). Amygdala activity to fear and anger in healthy young males is associated with testosterone. Psychoneuroendocrinology, 34, 687–693.

    PubMed  Article  Google Scholar 

  • Dixson, A. F., Brown, G. R., & Nevison, C. M. (1998). Developmental significance of the postnatal testosterone “surge” in male primates. In L. Ellis & L. Ebertz (Eds.), Males, females, and behavior: Toward biological understanding (pp. 129–145). Westport, CT: Praeger Publishers/Greenwood Publishing Group.

    Google Scholar 

  • Ernst, M., Maheu, F. S., Schroth, E., Hardin, J., Golan, L. G., Camerson, J., et al. (2007). Amygdala function in adolscents with congenital adrenal hyperplasia: A model for the study of early steroid abnormalities. Neuropsychologia, 45, 2104–2113.

    PubMed  Article  Google Scholar 

  • Forest, M. G., Sizonenko, P. C., Cathiard, A. M., & Bertrand, J. (1974). Hypophysogonadal function in humans during the first year of life: 1. Evidence for testicular activity in early infancy. Journal of Clinical Investigation, 53, 819–828.

    PubMed  Article  Google Scholar 

  • Fox, N. A. (2007). Finished and unfinished business. Monographs of the Society for Research in Child Development, 72, 81–91.

    Article  Google Scholar 

  • Friederici, A. D., Pannekamp, A., Partsch, C.-J., Ulmen, U., Oehler, K., Schmutzler, R., et al. (2008). Sex hormone testosterone affects language organization in the infant brain. NeuroReport, 19, 283–286.

    PubMed  Article  Google Scholar 

  • Gartstein, M. A., & Rothbart, M. K. (2003). Studying infant temperament via the Revised Infant Behavior Questionnaire. Infant Behavior and Development, 26, 64–86.

    Article  Google Scholar 

  • Gilmore, J. H., Lin, W., Prastawa, M. W., Looney, C. B., Vetsa, Y. S. K., Knickmeyer, R. C., et al. (2007). Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain. Journal of Neuroscience, 27, 1255–1260.

    PubMed  Article  Google Scholar 

  • Hassett, J. M., Siebert, E. R., & Wallen, K. (2008). Sex differences in rhesus monkey toy preferences parallel those of children. Hormones and Behavior, 54, 359–364.

    PubMed  Article  Google Scholar 

  • Herman, J. P., & Cullinan, W. E. (1997). Neurocircuitry of stress: Central control of the hypothalamo-pituitary-adrenocortical axis. Trends in Neurosciences, 20, 78–84.

    PubMed  Article  Google Scholar 

  • Hines, M. (2002). Sexual differentiation of the human brain and behavior. In D. W. Pfaff, A. P. Arnold, A. M. Etgen, S. E. Fahrback, & R. T. Ruben (Eds.), Hormones, brain and behavior (Vol. 4, pp. 425–462). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Hines, M. (2004). Brain gender. Oxford: Oxford University Press.

    Google Scholar 

  • Hines, M., & Kaufman, F. R. (1994). Androgen and the development of human sex-typical behavior: Rough-and-tumble play and sex of preferred playmates in children with congenital adrenal hyperplasia (CAH). Child Development, 65, 1042–1053.

    PubMed  Article  Google Scholar 

  • Hoepfner, B. A., & Ward, I. L. (1988). Prenatal and neonatal androgen exposure interact to affect sexual differentiation in female rats. Behavioral Neuroscience, 102, 61–65.

    PubMed  Article  Google Scholar 

  • Jansen, J., Beijers, R., Riksen-Walraven, M., & de Weerth, C. (2010). Cortisol reactivity in young infants. Psychoneuroendocrinology, 35, 329–338.

    PubMed  Article  Google Scholar 

  • Johnson, H. H. (2001). The development and neural basis of face recognition: Comment and speculation. Infant and Child Development, 10, 31–33.

    Article  Google Scholar 

  • Main, K. M., Schmidt, I. M., & Skakkebaek, N. E. (2005). A possible role for reproductive hormones in newborn boys: Progressive hypogonadism with the postnatal testosterone peak. Journal of Clinical Endocrinology and Metabolism, 85, 4905–4907.

    Article  Google Scholar 

  • Manuck, S. B., Marsland, A. L., Flory, J. D., Gorka, A., Ferrell, T. E., & Hariri, A. R. (2010). Salivary testosterone and trinucleotide (CAG) length polymorphism in the androgen receptor gene predict amygdala reactivity in men. Psychoneuroendocrinology, 35, 94–104.

    PubMed  Article  Google Scholar 

  • Mathews, G. A., Fane, B. A., Conway, G. S., Brook, C. G. D., & Hines, M. (2009). Personality and congenital hyperplasia: Possible effects of prenatal androgen exposure. Hormones and Behavior, 55, 285–291.

    PubMed  Article  Google Scholar 

  • McIntyre, M. H. (2006). The use of digit ratios as markers for perinatal androgen action. Reproductive Biology and Endocrinology, 4, 10–18.

    PubMed  Article  Google Scholar 

  • McIntyre, M. H., & Edwards, C. P. (2009). The early development of gender differences. Annual Review of Anthropology, 38, 83–97.

    Article  Google Scholar 

  • Pasterski, V. L., Hindmarsch, P., Geffner, M., Brook, C., Brain, C., & Hines, M. (2007). Increased aggression and activity level in 3- to 11-year-old girls with congenital adrenal hyperplasia (CAH). Hormones and Behavior, 52, 368–374.

    PubMed  Article  Google Scholar 

  • Perez-Edgar, K., Schmidt, L. A., Henderson, H. A., Schulkin, J., & Fox, N. A. (2008). Salivary cortisol levels and infant temperament shape developmental trajectories in boys at risk for behavioral maladjustment. Psychoneuroendocrinology, 33, 916–925.

    PubMed  Article  Google Scholar 

  • Rothbart, M. K. (1981). Measurement of temperament in infancy. Child Development, 52, 569–578.

    Article  Google Scholar 

  • Swan, S. H., Liu, F., Hines, M., Kruse, R. L., Wang, C., Redmon, J. B., et al. (2010). Prenatal phthalate exposure and reduced masculine play in boys. International Journal of Andrology, 33, 259–269.

    PubMed  Article  Google Scholar 

  • Welsh, M., Saunders, P. T., Fisken, M., Scott, H. M., Hutchison, G. R., Smith, L. B., et al. (2008). Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. Journal of Clinical Investigations, 118, 1479–1490.

    Article  Google Scholar 

  • Zucker, K. J., Bradley, S. J., Oliver, G., Blake, J., Fleming, S., & Hood, J. (1996). Psychosexual development of women with congenital adrenal hyperplasia. Hormones and Behavior, 30, 300–318.

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation Grant BCS-0618411 (GMA). We thank Dr. Teresa Wilcox and members of the Infant Cognition Lab for assistance in the recruitment of babies and their families.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerianne M. Alexander.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alexander, G.M., Saenz, J. Postnatal Testosterone Levels and Temperament in Early Infancy. Arch Sex Behav 40, 1287–1292 (2011). https://doi.org/10.1007/s10508-010-9701-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10508-010-9701-5

Keywords

  • Postnatal androgens
  • Infant development
  • Temperament
  • Sex differences