Advertisement

Archives of Sexual Behavior

, 38:821 | Cite as

Menstrual Cycle Phase Effects on Memory and Stroop Task Performance

  • Takeshi HattaEmail author
  • Keiko Nagaya
Original Paper

Abstract

The present study examined differences in Stroop and memory task performances modulated by gonadal steroid hormones during the menstrual cycle in women. Thirty women with regular menstrual cycles performed a logical memory task (Wechsler Memory Scale) and the Stroop task. The results showed a significant difference in Stroop task performance between low and high levels of estradiol and progesterone during the menstrual cycle, but there was no significant difference in memory performance between the two phases, nor was there any significant mood change that might have influenced cognitive performance. These findings suggest that sex-related hormone modulation selectively affects cognitive functions depending on the type of task and low level secretion of estradiol appears to contribute to reducing the level of attention that relates to the prefrontal cortex.

Keywords

Sex hormones Menstrual cycle Attention Memory Stroop test Prefrontal cortex 

Notes

Acknowledgements

The authors appreciate very much the Editor for his kind and patient help in editing of the article. Part of this study was supported by the grant for science research to the first author from the Ministry of Education, Science, Sports and Culture in Japan (No. 19330158).

References

  1. Alexander, G. M., Altemus, M., Peterson, B. S., & Wexler, B. E. (2002). Replication of a premenstrual decrease in right-ear advantage on language-related dichotic listening tests of cerebral laterality. Neuropsychologia, 40, 1293–1299.PubMedCrossRefGoogle Scholar
  2. Baddeley, A. (2000). The episodic buffer: A new component of working memory. Trends in Cognitive Sciences, 4, 417–423.PubMedCrossRefGoogle Scholar
  3. Banich, M. T. (1997). Neuropsychology. Boston: Houghton Mifflin.Google Scholar
  4. Bench, C. J., Frith, C. D., Grasby, P. M., Friston, K. J., Paulesu, E., Frackowiak, R. S., et al. (1993). Investigation of the functional anatomy of attention using the Stroop test. Neuropsychologia, 31, 907–922.PubMedCrossRefGoogle Scholar
  5. Bibawi, D., Cherry, B., & Hellige, J. B. (1995). Fluctuations of perceptual asymmetry across time in women and men: Effects related to the menstrual cycle. Neuropsychologia, 33, 131–138.PubMedCrossRefGoogle Scholar
  6. Boyle, G. J. (2002). Prediction of cognitive learning performance from multivariate state-change scores. Australian Educational and Developmental Psychologist, 3, 17–21.Google Scholar
  7. Casasanto, D. J., Killgore, W. D. S., Maldjian, J. A., Glosser, G., Alsop, D. C., Cooke, A. M., et al. (2002). Neural correlates of successful and unsuccessful verbal memory encoding. Brain and Language, 80, 287–295.PubMedCrossRefGoogle Scholar
  8. Cater, C. S., Mintun, M., & Cohen, J. D. (1995). Interference and facilitation effects during selective attention: An H215O PET study of Stroop task performance. Neuroimage, 2, 264–272.CrossRefGoogle Scholar
  9. Cox, T., & Mackey, C. J. (1985). The measurement of self-reported stress and arousal. British Journal of Psychology, 76, 183–186.PubMedGoogle Scholar
  10. Desenbach, N. U. F., Visscher, K. M., Palmer, E. D., Miezin, F. M., Wegner, K., Kang, H., et al. (2006). A core system for the implementation of task sets. Neuron, 50, 799–812.CrossRefGoogle Scholar
  11. Erez, A., & Isen, A. H. (2002). The influence of positive affect on the components of expectancy motivation. Journal of Applied Psychology, 87, 1055–1067.PubMedCrossRefGoogle Scholar
  12. George, J. M., & Zhou, J. (2002). Understanding when bad moods foster creativity and good ones don’t: The role of context and charity of feeling. Journal of Applied Psychology, 87, 687–697.PubMedCrossRefGoogle Scholar
  13. Hampson, E., Finestone, J. M., & Levy, N. (2005). Menstrual cycle effects on perceptual closure mediated changes in performance on a fragmented objects test of implicit memory. Brain and Cognition, 57, 107–110.PubMedCrossRefGoogle Scholar
  14. Hao, J., Rapp, P. R., Janssen, W. G. M., Lou, W., Lasley, B. L., Hof, P. R., et al. (2007). Interactive effects of age and estrogen on cognition and pyramidal neurons in monkey prefrontal cortex. Proceedings of the National Academy of Sciences, 104, 11465–11470.CrossRefGoogle Scholar
  15. Hatta, T. (1995). Japanese Stress Arousal Checklist: Stress measurement by adjective words. Osaka: Nihon-igaku.Google Scholar
  16. Hatta, T., Hasegawa, Y., & Matsuyama, Y. (2006). Mood changes and higher cognitive function in patients hospitalized for hip fracture and spinal disease. In A. V. Clark (Ed.), Psychology of moods: New research (pp. 161–185). New York: Nova Science Publisher.Google Scholar
  17. Hatta, T., Ito, Y., & Yoshizaki, K. (2001). Digit cancellation test (D-CAT) for attention. Osaka: Union Press.Google Scholar
  18. Hatta, T., Nagahara, N., Iwahara, A., & Ito, E. (2005a). Three-word recall and logical memory recall in normal aging. Journal of Human Environmental Studies, 3, 7–12.Google Scholar
  19. Hatta, T., Nagaya, K., & Onishi, M. (2005b, August). Age related sex difference in higher cognitive abilities in healthy elderly people. Paper presented at the International Behavioral Development Symposium, Minot State University, Minot, ND.Google Scholar
  20. Hatta, T., & Nishiide, S. (1991). Teachers’ stress in Japanese primary schools: Comparison with workers in private companies. Stress and Medicine, 7, 207–211.CrossRefGoogle Scholar
  21. Hatta, T., Yoshida, H., Kawakami, A., & Okamoto, M. (2002). Color of computer display frame in work performance, mood, and physiological responses. Perceptual and Motor Skills, 94, 39–46.PubMedCrossRefGoogle Scholar
  22. Hausmann, M., & Gruturkun, O. (2000). Steroid fluctuations modify functional cerebral asymmetries: The hypothesis of progesterone-mediated interhemispheric decoupling. Neuropsychologia, 38, 1362–1374.PubMedCrossRefGoogle Scholar
  23. Heister, G., Landis, T., Regard, M., & Schroeder-Heister, P. (1989). Shift of functional cerebral asymmetry during the menstrual cycle. Neuropsychologia, 27, 874–880.CrossRefGoogle Scholar
  24. Hirosawa, I., Hatta, T., & Yoneda, K. (1998). Subjective mood variations of student nurses during clinical practice. Stress Medicine, 14, 49–54.CrossRefGoogle Scholar
  25. Hollander, A., Hausmann, M., Hamm, J. P., & Corballis, M. C. (2005). Sex hormonal modulation of hemispheric asymmetries in the attentional blink. Journal of the International Neuropsychological Society, 11, 263–272.PubMedCrossRefGoogle Scholar
  26. Houseman, M., Becker, C., Gather, U., & Gunturkun, O. (2002). Functional cerebral asymmetries during the menstrual cycle: A cross-sectional and longitudinal analysis. Neuropsychologia, 40, 808–816.CrossRefGoogle Scholar
  27. Ino, T., Doi, T., Kimura, T., Ito, J., & Fukuyama, H. (2004). Neural substrates of the performance of an auditory verbal memory: Between-subjects analysis by fMRI. Brain Research Bulletin, 64, 115–126.PubMedCrossRefGoogle Scholar
  28. Johnson, S. C., Saykin, A. J., Flashman, L. A., McAllister, T. W., & Sparling, M. B. (2001). Brain activation on fMRI and verbal memory ability: Functional neuroanatomic correlates of CVLT performance. Journal of International Neuropsychology Society, 7, 55–62.CrossRefGoogle Scholar
  29. Kimura, D. (1996). Sex and cognition. Cambridge, MA: MIT Press.Google Scholar
  30. Larisch, R., Meyer, W., Klimke, A., Kehren, F., Vosberg, H., & Muller-Gartner, H. W. (1998). Left-right asymmetry of striatal dopamine D2 receptors. Nuclear Medicine Communications, 19, 781–787.PubMedCrossRefGoogle Scholar
  31. Lawrence, N. S., Ross, T. J., & Stein, E. A. (2002). Cognitive mechanisms of nicotine on visual attention. Neuron, 36, 539–548.PubMedCrossRefGoogle Scholar
  32. Leung, H.-C., Skudlarski, P., Gatenby, J. C., Peterson, B. S., & Gore, J. C. (2000). An event-related functional MRI study of the Stroop color word interference task. Cerebral Cortex, 10, 552–560.PubMedCrossRefGoogle Scholar
  33. Maccoby, E. E. (Ed.). (1966). The development of sex differences. Stanford, CA: Stanford University Press.Google Scholar
  34. MacLeod, C. M. (1991). Half century of research on the Stroop effect: An integrative view. Psychological Bulletin, 109, 163–203.PubMedCrossRefGoogle Scholar
  35. MacLeod, C. M., & MacDonald, P. A. (2000). Interdimensional interference in the Stroop effect: Uncovering the cognitive and neural anatomy of attention. Trends in Cognitive Sciences, 4, 383–391.PubMedCrossRefGoogle Scholar
  36. McCourt, M. E., Mark, V. W., Randonovich, K. J., Willson, S. K., & Freeman, P. (1997). The effects of gender, menstrual phase and practice on the perceived location of the midsagittal plane. Neuropsychologia, 35, 717–724.PubMedCrossRefGoogle Scholar
  37. Mead, L. A., & Hampson, E. (1996). Asymmetric effects of ovarian hormones on hemispheric activity: Evidence from dichotic and tachistoscopic tests. Neuropsychologia, 10, 578–587.CrossRefGoogle Scholar
  38. Miles, C., Green, R., Sanders, G., & Hines, M. (1998). Estrogen and memory in a transsexual population. Hormones and Behavior, 34, 199–208.PubMedCrossRefGoogle Scholar
  39. Peterson, B. S., Kane, M. J., Alexander, G. M., Lacadie, C., Skudlarski, P., Leung, H., et al. (2002). An event-related functional MRI study comparing interference effects in the Simon and Stroop tasks. Cognitive Brain Research, 13, 427–440.PubMedCrossRefGoogle Scholar
  40. Peterson, B. S., Skudlarski, P., Gatenby, J. C., Zang, H., Anderson, A. W., & Gore, J. C. (1999). An fMRI study of Stroop word-color interference: Evidence for cingulated subregions subserving multiple distributed attention systems. Biological Psychiatry, 45, 1237–1258.PubMedCrossRefGoogle Scholar
  41. Posner, M. I., & DiGilolamo, G. J. (2000). Attention in cognitive neurosciences: An overview. In M. Gazzaniga (Ed.), The new cognitive neurosciences (2nd ed., pp. 623–632). Cambridge, MA: MIT Press.Google Scholar
  42. Purdon, S. E., Klein, S., & Flor-Henry, P. (2001). Menstrual effects on asymmetrical olfactory acuity. Journal of International Neuropsychological Society, 7, 703–709.CrossRefGoogle Scholar
  43. Rode, C., Wagner, M., & Gunturkun, O. (1995). Menstrual cycle affects functional cerebral asymmetries. Neuropsychologia, 33, 855–865.PubMedCrossRefGoogle Scholar
  44. Schacter, D. L., & Wagner, A. D. (1999). Medial temporal lobe activations in fMRI and PET studies of episodic encoding and retrieval. Hippocampus, 9, 7–24.PubMedCrossRefGoogle Scholar
  45. Scoville, W. B. (1968). Amnesia after bilateral medial temporal-lobe excision: Introduction to case H. M. Neuropsychologia, 6, 211–213.CrossRefGoogle Scholar
  46. Sohlberg, M., & Mateer, C. A. (1989). Introduction to cognitive rehabilitation: Theory and practice. New York: Guilford Press.Google Scholar
  47. Squire, L. R., & Knowlton, B. J. (2002). The medial temporal lobe, the hippocampus, and memory systems of the brain. In M. Gazzaniga (Ed.), The new cognitive neurosciences (2nd ed., pp. 765–780). Cambridge, MA: MIT Press.Google Scholar
  48. Swick, D., & Jovanovic, J. (2002). Anterior cingulate cortex and the Stroop task: Neuropsychological evidence for topographic specificity. Neuropsychologia, 40, 1240–1253.PubMedCrossRefGoogle Scholar
  49. Taketani, Y., & Maehara, S. (Eds.). (2001). Handbook of midwifery. Tokyo: Igakusyoin.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Psychology, Graduate School of Environmental StudiesNagoya UniversityNagoyaJapan
  2. 2.Kansai University of Welfare SciencesKashiwaraJapan
  3. 3.Daiyukai General HospitalIchinomiya CityJapan

Personalised recommendations