How Computational Tools Can Help Rhetoric and Informal Logic with Argument Invention

  • Douglas Walton
  • Thomas F. Gordon


This paper compares the features and methods of the two leading implemented systems that offer a tool for helping a user to find or invent arguments to support or attack a designated conclusion, the Carneades Argumentation System and the IBM Watson Debater tool. The central aim is to contribute to the understanding of scholars in informal logic, rhetoric and argumentation on how these two software systems can be useful for them. One contribution of the paper is to explain to these potential users how the two tools are applicable to the task of inventing arguments by using some simple illustrative examples. Another is to redefine the structure of argument invention as a procedure.


Rhetorical invention Artificial intelligence Argument mining Computational linguistics 


  1. Aharoni, E., C. Alzate, A. Bar-Haim, Y. Bilu, L. Dankin, I. Eiron, D. Hershkovich, S. Hummerl, M. Khapra, T. Lavee, R. Levy, P. Matchen, A. Polnarov, V. Raykar, R. Rinott, A. Saha, N. Zwerdling, D. Konopnicki, D. Gutfreund, and N. Slonim 2014. Claims on Demand—An Initial Demonstration of a System for Automatic Detection and Polarity Identification of Context Dependent Claims in Massive Corpora. In Proceedings of the 25th International Conference on Computational Linguistics (COLING 2014), Dublin, Ireland, 6–9. Available as of 2014/12/17 at:
  2. Anon. 2014. Proceedings of the First Workshop on Argumentation Mining ACL 2014. Stroudsburg, Pennsylvania. Association for Computational Linguistics, 2014. Available at:
  3. Anon. 2015. Proceedings of the Second Workshop on Argumentation Mining, June 4, 2015, Denver, Colorado. Association for Computational Linguistics, 2015. Available at:
  4. Aristotle. 1991. On Rhetoric: A Theory of Civil Discourse, ed. G.A. Kennedy. Oxford: Oxford University Press.Google Scholar
  5. Arnauld, A. 1662. La Logique, ou l’Art de Penser [Commonly called the Port-Royal Logic]. Translated into English as The Art of Thinking, Dickoff, J. and James, P., 1964. Indianapolis: Bobbs-Merrill.Google Scholar
  6. Ashley, K.D. (2014). Automatically Extracting Arguments from Legal Texts: A Position Paper. Paper Presented at the Met-Arg Workshop, JURIX 2014.Google Scholar
  7. Ashley, K. 2017. Artificial Intelligence and Legal Analytics: New Tools for Law Practice in the Digital Age. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  8. Bench-Capon, Trevor J.M., Sylvie Doutre, and Paul E. Dunne. 2007. Audiences in Argumentation Frameworks. Artificial Intelligence 171 (1): 42–71.CrossRefGoogle Scholar
  9. Cabrio, E., and S. Villata. 2012, Combining Textual Entailment and Argumentation Theory for Supporting Online Debate Interactions. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, 208–212.Google Scholar
  10. Cicero, M.T. 1949. De Inventione (Loeb Library Edition). Cambridge, MA: Harvard University Press.Google Scholar
  11. Dagan, I., O. Glickman, and B. Magnini. 2006. The PASCAL Recognizing Textual Entailment Challenge.
  12. Dagan, I., B. Dolan, B. Magnini, and D. Roth. 2009. Recognizing Textual Entailment: Rational Evaluation and Approaches. Natural Language Engineering 15(4), i–xvii.CrossRefGoogle Scholar
  13. Fruwirth, T. 2009. Constraint Handling Rules. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  14. Gordon, T.F. 2010. The Carneades Argumentation Support System. In Dialectics, dialogue and argumentation, ed. C. Reed and C.W. Tindale, 145–156. London: College Publications.Google Scholar
  15. Gordon, T.F. 2011a. Combining Rules and Ontologies with Carneades. In Proceedings of the 5th International RuleML2011@BRF Challenge, CEUR Workshop Proceedings103–110.Google Scholar
  16. Gordon, T.F. 2011b. Analyzing Open Source License Compatibility Issues with Carneades. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Law (ICAIL-2011), 50–55. New York, NY: ACM Press.Google Scholar
  17. Gordon, T.F., H. Prakken, and D. Walton. 2007. The Carneades Model of Argument and Burden of Proof. Artificial Intelligence 171(10–15), 875–896.CrossRefGoogle Scholar
  18. Gordon, T.F., and D. Walton. 2009. Proof Burdens and Standards. In Argumentation and Artificial Intelligence, ed. Iyad Rahwan and Guillermo Simari, 239–260. Berlin: Springer.CrossRefGoogle Scholar
  19. Gordon, T.F., and H. Friedrich. 2017. Representing Argumentation Schemes with Constraint Handling Rules, CMNA 2017.Google Scholar
  20. Kennedy, G. 1963. The Art of Persuasion in Greece. London: Routledge.Google Scholar
  21. Kienpointner, M. 1997. On the Art of Finding Arguments: What Ancient and Modern Masters of Invention Have to Tell Us About the Ars Inveniendi. Argumentation 11(2): 225–236.CrossRefGoogle Scholar
  22. Lawrence, J., Bex, F., and C. Reed. 2012. Dialogues on the Argument Web: Mixed Initiative Argumentation with Arvina. In Proceedings of the 4th International Conference on Computational Models of Argument (COMMA 2012), 513–514. Amsterdam: IOS Press.Google Scholar
  23. Levy, R., Y. Bilu, D. Hershcovich, E. Aharoni, and M. Slonim. 2014. Context Dependent Claim Detection, Proceedings of the 25th International Conference on Computational Linguistics (COLING 2014), Dublin, Ireland, 1489–1500. Available as of 2014/12/17 at:
  24. Mochales, R., and M.-F. Moens. (2011). Argumentation Mining. Artificial Intelligence and Law 19(1), 1–22.CrossRefGoogle Scholar
  25. Peldszus, A., and M. Stede. 2013. From Argument Diagrams to Argumentation Mining in Texts. International Journal of Cognitive Informatics and Natural Intelligence 7(1), 1–31.CrossRefGoogle Scholar
  26. Pollock, J.L. 1995. Cognitive Carpentry. Cambridge, MA: The MIT Press.Google Scholar
  27. Prakken, H. 2010. An Abstract Framework for Argumentation with Structured Arguments. Argument & Computation 1(2), 93–124.CrossRefGoogle Scholar
  28. Taboada, M., and W.C. Mann (2006). Rhetorical Structure Theory: Looking Back and Moving Ahead. Discourse Studies 8(3), 423–459.CrossRefGoogle Scholar
  29. Toni, F. 2014. A Tutorial on Assumption-Based Argumentation. Argument and Computation 5(1), 89–117.CrossRefGoogle Scholar
  30. Turney, P. 2002. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews. In Proceedings of the Association for Computational Linguistics, 417–424.Google Scholar
  31. Verheij, B. 2005. Virtual Arguments: On the Design of Argument Assistants for Lawyers and Other Arguers. The Hague: TMC Asser Press.CrossRefGoogle Scholar
  32. Verheij, B. 2008. About the Logical Relations Between Cases and Rules. In Legal Knowledge and Information Systems. JURIX 2008: The Twenty-First Annual Conference, ed. E. Francesconi, G. Sartor, and D. Tiscornia, 21–32. Amsterdam: IOS Press.Google Scholar
  33. Walton, D. 1994. Begging the Question as a Pragmatic Fallacy. Synthese 100: 95–131.CrossRefGoogle Scholar
  34. Walton, D. 2002. Are Some Modus Ponens Arguments Deductively Invalid? Informal Logic, 22(1): 19–46.Google Scholar
  35. Walton, D., C. Reed, and F. Macagno. 2008. Argumentation Schemes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  36. Walton, D., and T.F. Gordon. 2012. The Carneades Model of Argument Invention. Pragmatics and Cognition 20(1): 1–31.CrossRefGoogle Scholar
  37. Walton, D. and T.F. Gordon. 2017. Argument Invention with the Carneades Argumentation System. ScriptED: A Journal of Law, Technology and Society 14(2): 168–207.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2018

Authors and Affiliations

  1. 1.Centre for Research on Reasoning, Argumentation and RhetoricUniversity of WindsorWindsorCanada
  2. 2.Fraunhofer FOKUSBerlinGermany

Personalised recommendations