Skip to main content
Log in

Biomass of Cladophora (Chlorophyta, Cladophorales) is a promising resource for agriculture with high benefits for economics and the environment

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Green algae Cladophora spp. inhabit waters with wide ranges of salinity and temperature, and their productivity is much higher than terrestrial plants. In natural waters, including hypersaline, they occupy large areas producing large biomass. Summing up and analyzing data from about 273 published articles, the review demonstrates the high production potential of Cladophora spp. and the diverse rich biochemical content of their biomass giving the prosperous possibility of their wide applications in agri–/aquaculture. As a fertilizer, they can be utilized by different methods (biochar, dry algae powder, etc.). Their extracts are effective growth stimulants for different cultivated plant species. Biomass is a promising fount of carbohydrates, vitamins, polyunsaturated fatty acids, proteins, essential microelements, and other biologically active compounds for the nutrition of animals and humans. Now their biomass is used in the feeding of livestock and chickens. It is also a valuable feed supplement for a variety of fish species, which may substitute up to 28% artificial feed in fish/shrimp cultivation. Cladophora co–farming with fish/shrimp reduces the use of artificial feed increasing commercial profitability. A wide use of Cladophora in agri–/aquaculture is economical and also mitigates environmental problems by reducing needs in agrarian land, and freshwater use, and likewise diminishing the emission of greenhouse gas methane by livestock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data used in this study are available upon request from the corresponding author.

References

  • Abbas M, Anwar J, Zafar–Ul–Hye M, Khan RI, Saleem M, Rahi AA, Danish S, Datta R (2020) Effect of seaweed extract on productivity and quality attributes of four onion cultivars. Horticulturae 6:28

    Article  Google Scholar 

  • Abbott DW, Aasen IM, Beauchemin KA, Grondahl F, Gruninger R, Hayes M, Huws S, Kenny DA, Krizsan SJ, Kirwan SF, Lind V, Meyer U, Ramin M, Theodoridou K, von Soosten D, Walsh PJ, Waters S, Xing X (2020) Seaweed and seaweed bioactives for mitigation of enteric methane: challenges and opportunities. Animals 10:2432

    Article  PubMed  PubMed Central  Google Scholar 

  • Abdel–Raouf N, Al–Homaidan AA, Ibraheem IBM (2012) Agricultural importance of algae. Afr J Biotechnol 11:11648–11658

    Article  Google Scholar 

  • Abreu MH, Pereira R, Sassi J–F (2014) Marine algae and the global food industry. In: Pereira L, Neto JM (eds) Marine algae – biodiversity, taxonomy, environmental assessment, and biotechnology. CRC Press, Boca Raton, pp 300–319

    Google Scholar 

  • Abu Hafsa SH, Khalel MS, El–Gindy YM, Hassan AA (2021) Nutritional potential of marine and freshwater algae as dietary supplements for growing rabbits. Ital J Anim Sci 20:784–793

    Article  CAS  Google Scholar 

  • Ahmed N, Thompson S (2019) The blue dimensions of aquaculture: a global synthesis. Sci Total Environ 652:851–861

    Article  PubMed  Google Scholar 

  • Akköz C, Arslan D, Ünver A, Özcan MM, Yilmaz B (2011) Chemical composition, total phenolic and mineral contents of Enteromorpha intestinalis (L.) Kütz. and Cladophora glomerata (L.) Kütz. seaweeds. J Food Biochem 35:513–523

    Article  Google Scholar 

  • Albrektsen S, Kortet R, Skov PV, Ytteborg E, Gitlesen S, Kleinegris D, Mydland L–T, Hansen JØ, Lock E–J, Mørkøre T, James P, Wang X, Whitaker RD, Vang B, Hatlen B, Daneshvar E, Bhatnagar A, Jensen LB, Øverland M (2022) Future feed resources in sustainable salmonid production: a review. Rev Aquac 14:1790–1812

    Article  Google Scholar 

  • Ali A, Abid R (2006) Cladophora glomerata (L.) Kützing, as feed supplement to broiler chicks. Int J Biol Biotechnol 3:425–428

    Google Scholar 

  • Alkhafaji BY, Malih HR, Elkheralla RJ (2019) Effect of fertilization by Cladophora algae on morphological characteristics of Vigna radiate & Sesamum indicum plants. J Phys Conf Ser 1294:072024

    Article  CAS  Google Scholar 

  • Al–Khalaifah H, Uddin S (2022) Assessment of Sargassum sp., Spirulina sp., and Gracilaria sp. as poultry feed supplements: feasibility and environmental implications. Sustainability 14:8968

    Article  Google Scholar 

  • American Dietetic Association (1999) Position of the American Dietetic Association: functional foods. J Am Diet Assoc 99:1278–1285

    Article  Google Scholar 

  • Ammar EE, Aioub AA, Elesawy AE, Karkour AM, Mouhamed MS, Amer AA, EL–Shershaby NA (2022) Algae as Bio–fertilizers: between current situation and future prospective. Saudi J Biol Sci 29:3083–3096

    Article  PubMed  PubMed Central  Google Scholar 

  • Anh NTN, Toan NT, Hai TN (2013) Potential use of dried gut weed (Enterormorpha sp.) and blanket weed (Cladophoraceae) as a feed for the giant gourami (Osphronemus goramy) (abstract in English). Can Tho Uni J Sci 35:1040–1110

    Google Scholar 

  • Anh NTN, Nhung DTK, Hai TN (2014) Replacement of soybean meal protein with gut weed (Enteromorpha sp.) and blanket weed (Cladophoracae) protein in practical diets for the white leg shrimp (Litopenaeus vannamei) postlarvae (abstract in English). Can Tho Uni J Sci 2:1580–1165

  • Anh NTN, Hong DT, Hai TN (2016) Investigating abundance and impacts of green seaweed (Cladophoraceae) in the improved extensive shrimp farms in Mekong delta. In: International Fisheries Symposium – IFS 2016 promoting healthier aquaculture and fisheries for food safety and security; October 31–November 2, 2016; Phu Quoc Island of Vietnam, Vietnam, 248

  • Anh NN, Huong H, Hai TN, Khanh LV (2017) Feasibility of partial replacement of discarded filamentous green seaweed (Cladophora) with commercial feed in spotted scat (Scatophagus argus) culture. Int J Sci Res Publ 7:232–240

    Google Scholar 

  • Anh NT, Hai TN, Hien TT (2018) Effects of partial replacement of fishmeal protein with green seaweed (Cladophora spp.) protein in practical diets for the black tiger shrimp (Penaeus monodon) postlarvae. J Appl Phycol 30:2649–2658

    Article  Google Scholar 

  • Annam Renita A, Senthil Kumar P (2020) Valorization of waste algal boom for value–added products. In: Abomohra AEF, Wang Q, Huang J (eds) Waste–to–energy. Springer, Cham, pp 129–137

    Google Scholar 

  • Ansari FA, Shriwastav A, Gupta SK, Rawat I, Guldhe A, Bux F (2015) Lipid extracted algae as a source for protein and reduced sugar: a step closer to the biorefinery. Bioresour Technol 179:559–564

    Article  CAS  PubMed  Google Scholar 

  • Anufriieva EV (2018) How can saline and hypersaline lakes contribute to aquaculture development? A review. J Oceanol Limnol 36:2002–2009

    Article  CAS  Google Scholar 

  • Appler HN (1985) Evaluation of Hydrodictyon reticulatum as protein source in feeds for Oreochromis (Tilapia) niloticus and Tilapia zillii. J Fish Biol 27:327–334

    Article  Google Scholar 

  • Appler HN, Jauncey K (1983) The utilization of a filamentous green alga (Cladophora glomerata (L) Kutzin) as a protein source in pelleted feeds for Sarotherodon (Tilapia) niloticus fingerlings. Aquaculture 30:21–30

    Article  Google Scholar 

  • Arai S (1996) Studies on functional foods in Japan—state of the art. Biosci Biotechnol Biochem 60:9–15

    Article  CAS  PubMed  Google Scholar 

  • Arata PX, Quintana I, Raffo MP, Ciancia M (2016) Novel sulfated xylogalactoarabinans from green seaweed Cladophora falklandica: Chemical structure and action on the fibrin network. Carbohydr Polym 154:139–150

    Article  CAS  PubMed  Google Scholar 

  • Ashley K, Cordell D, Mavinic D (2011) A brief history of phosphorus: from the philosopher’s stone to nutrient recovery and reuse. Chemosphere 84:737–746

    Article  CAS  PubMed  Google Scholar 

  • Aulio K (1983) Heavy metals in the green alga Cladophora glomerata as related to shore types in the Archipelago Sea, SW Finland. Mar Pollut Bull 14:347–348

    Article  CAS  Google Scholar 

  • Ayisi CL, Hua X, Apraku A, Afriyie G, Kyei BA (2017) Recent studies toward the development of practical diets for shrimp and their nutritional requirements. HAYATI J Biosci 24:109–117

    Article  Google Scholar 

  • Barrington K, Chopin T, Robinson S (2009) Integrated multi–trophic aquaculture (IMTA) in marine temperate waters. Integrated mariculture: a global review. FAO Fish Tech Pap 529:7–46

    Google Scholar 

  • Baweja P, Kumar S, Kumar G (2019) Organic fertilizer from algae: a novel approach towards sustainable agriculture. In: Giri B, Prasad R, Wu Q–S, Varma A (eds) Biofertilizers for sustainable agriculture and environment. Springer International Publishing, Cham, pp 353–370

    Chapter  Google Scholar 

  • Belattmania Z, Reani A, Sabour B (2022) The global seaweed industry: applications and emerging markets. In: Sangeetha J, Thangadurai D (eds) Seaweed biotechnology. Apple Academic Press, New York, pp 153–182

    Chapter  Google Scholar 

  • Beveridge MC, Brummett RE (2015) Aquaculture and the environment. In: Craig F (ed) Freshwater fisheries ecology. Wiley, Oxford, pp 794–803

    Chapter  Google Scholar 

  • Bhat I, Haripriya G, Jogi N, Mamatha BS (2021) Carotenoid composition of locally found seaweeds of Dakshina Kannada district in India. Algal Res 53:102154

    Article  Google Scholar 

  • Bianchi TS, Kautsky L, Argyrou M (1997) Dominant chlorophylls and carotenoids in macroalgae of the Baltic Sea (Baltic proper): their use as potential biomarkers. Sarsia 82:55–62

    Article  Google Scholar 

  • Bird MI, Wurster CM, de Paula Silva PH, Bass AM, De Nys R (2011) Algal biochar–production and properties. Bioresour Technol 102:1886–1891

    Article  CAS  PubMed  Google Scholar 

  • Bird MI, Wurster CM, de Paula Silva PH, Paul NA, de Nys R (2012) Algal biochar: effects and applications. GCB Bioenergy 4:61e69

    Article  Google Scholar 

  • Boedeker C, Leliaert F, Zuccarello GC (2016) Molecular phylogeny of the Cladophoraceae (Cladophorales, Ulvophyceae), with the resurrection of Acrocladus Nägeli and Willeella Børgesen, and the description of Lurbica gen. nov. and Pseudorhizoclonium gen. nov. J Phycol 52:905–928

    Article  CAS  PubMed  Google Scholar 

  • Bonotto S, Van Der Ben D, Dalessandro G (1987) Osservazioni morfologiche su Cladophora prolifera (Rothpletz) Kutzing raccolta a Porto Cesareo. Alghe e loro utilizzazione, Convegno Nazionale 209

  • Bourebaba L, Michalak I, Röcken M, Marycz K (2019) Cladophora glomerata methanolic extract decreases oxidative stress and improves viability and mitochondrial potential in equine adipose derived mesenchymal stem cells (ASCs). Biomed Pharmacother 111:6–18

    Article  CAS  PubMed  Google Scholar 

  • Braden KW, Blanton JR, Montgomery JL, van Santen E, Allen VG, Miller MF (2007) Tasco supplementation: effects on carcass characteristics, sensory attributes, and retail display shelf–life. J Anim Sci 85:754–768

    Article  CAS  PubMed  Google Scholar 

  • Breene WM, Lin S, Hardman L, Orf J (1988) Protein and oil content of soybeans from different geographic locations. J Am Oil Chem Soc 65:1927–1931

    Article  CAS  Google Scholar 

  • Bucholc K, Szymczak–Żyła M, Lubecki L, Zamojska A, Hapter P, Tjernström E, Kowalewska G (2014) Nutrient content in macrophyta collected from southern Baltic Sea beaches in relation to eutrophication and biogas production. Sci Total Environ 473:298–307

    Article  PubMed  Google Scholar 

  • Bulgariu L (2020) Efficient use of algae biomass loaded with essential metal ions in the manufacture of feed additives. J Appl Phycol 32:1779–1788

    Article  CAS  Google Scholar 

  • Byappanahalli MN, Sawdey R, Ishii S, Shively DA, Ferguson JA, Whitman RL, Sadowsky MJ (2009) Seasonal stability of Cladophora–associated Salmonella in Lake Michigan watersheds. Water Res 43:806–814

    Article  CAS  PubMed  Google Scholar 

  • Cárdenas JV, Gálvez AO, Brito LO, Galarza EV, Pitta DC, Rubin VV (2015) Assessment of different levels of green and brown seaweed meal in experimental diets for white leg shrimp (Litopenaeus vannamei, Boone) in recirculating aquaculture system. Aquac Int 23:1491–1504

    Article  Google Scholar 

  • Carefoot TH (1973) Feeding, food preference, and the uptake of food energy by the supralittoral isopod Ligia pallasii. Mar Biol 18:228–236

    Article  Google Scholar 

  • Cavallo A, Giangrande A, Accogli R, Marchiori S (2006) A test on the use of Cladophora prolifera (Roth.) Kutz. (Chlorophyta, Cladophorales) as effective fertilizer for agricultural use. Thalassia Salentina 29:101–106

    Google Scholar 

  • Chan JCC, Cheung PCK, Ang PO (1997) Comparative studies on the effect of three drying methods on the nutritional composition of seaweed Sargassum hemiphyllum (Turn.) C. Ag J Agric Food Chem 45:3056–3059

    Article  CAS  Google Scholar 

  • Chatterjee A, Singh S, Agrawal C, Yadav S, Rai R, Rai LC (2017) Role of algae as a biofertilizer. In: Algal green chemistry. Recent Progress in Biotechnology. Elsevier, Amsterdam, pp 189–200

  • Chatzissavvidis C, Therios I (2014) Role of algae in agriculture. In: Pomin VH (ed) Seaweeds. Nova Science Publishers Inc., Hauppauge, pp 1–37

    Google Scholar 

  • Chen B, Han MY, Peng K, Zhou SL, Shao L, Wu XF, Wei WD, Liu SY, Li Z, Li JS, Chen GQ (2018) Global land–water nexus: agricultural land and freshwater use embodied in worldwide supply chains. Sci Total Environ 613:931–943

    PubMed  Google Scholar 

  • Chojnacka K (2008) Using biosorption to enrich the biomass of seaweeds from the Baltic Sea with microelements to produce mineral feed supplement for livestock. Biochem Eng J 39:246–257

    Article  CAS  Google Scholar 

  • Cole AJ, de Nys R, Paul NA (2014) Removing constraints on the biomass production of freshwater macroalgae by manipulating water exchange to manage nutrient flux. PLoS One 9:e101284

    Article  PubMed  PubMed Central  Google Scholar 

  • Committee on Opportunities in the Nutrition and Food Sciences, Food and Nutrition Board, Institute of Medicine (1994) Enhancing the food supply. In: Thomas PR, Earl R (eds) Opportunities in the nutrition and food sciences: research challenges and the next generation of investigators. National Academy Press, Washington, pp 98–142

    Google Scholar 

  • Cordeiro MR, Mengistu GF, Pogue SJ, Legesse G, Gunte KE, Taylor AM, Ominski KH, Beauchemin KA, McGeough EJ, Faramarzi M, McAllister TA (2022) Assessing feed security for beef production within livestock–intensive regions. Agric Syst 196:103348

    Article  Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Change 19:292–305

    Article  Google Scholar 

  • Costa M, Cardoso C, Afonso C, Bandarra NM, Prates JA (2021) Current knowledge and future perspectives of the use of seaweeds for livestock production and meat quality: a systematic review. J Anim Physiol Anim Nutr 105:1075–1102

    Article  CAS  Google Scholar 

  • Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393

    Article  CAS  Google Scholar 

  • Cruz–Suárez LE, Tapia–Salazar M, Nieto–Lopez MG, Ricque–Marie D (2008) A review of the effect of macroalgae in shrimp feed and in co–culture. IX Simposio Internacional de Nutricion Acuicola; Noviembre 24–27, 2008; Monterrey. Mexico, Universidad Autonoma de Nuevo Leon, Nuevo Leon, pp 304–333

    Google Scholar 

  • Dawood MA (2021) Nutritional immunity of fish intestines: important insights for sustainable aquaculture. Rev Aquac 13:642–663

    Article  Google Scholar 

  • Dawson IK, Park SE, Attwood SJ, Jamnadass R, Powell W, Sunderland T, Carsan S (2019) Contributions of biodiversity to the sustainable intensification of food production. Glob Food Sec 21:23–37

    Article  Google Scholar 

  • De Boer IJ, Hoving IE, Vellinga TV, Van de Ven GW, Leffelaar PA, Gerber PJ (2013) Assessing environmental impacts associated with freshwater consumption along the life cycle of animal products: the case of Dutch milk production in Noord–Brabant. Int J Life Cycle Assess 18:193–203

    Article  CAS  Google Scholar 

  • Dere Ş, Güneş T, Sivaci R (1998) Spectrophotometric determination of chlorophyll–A, B and total carotenoid contents of some algae species using different solvents. Turk J Bot 22:13–18

    Google Scholar 

  • Derner JD, Hunt L, Ritten J, Capper J, Han G (2017) Livestock production systems. In: Briske D (ed) Rangeland systems. Springer, New York, pp 347–372

    Chapter  Google Scholar 

  • Dziergowska K, Wełna M, Szymczycha–Madeja A, Chęcmanowski J, Michalak I (2021) Valorization of Cladophora glomerata biomass and obtained bioproducts into biostimulants of plant growth and as sorbents (biosorbents) of metal ions. Molecules 26:6917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elenkov I, Stefanov K, Dimitrova–Konaklieva S, Popov S (1996) Effect of salinity on lipid composition of Cladophora vagabunda. Phytochemistry 42:39–44

    Article  CAS  Google Scholar 

  • Emerenciano MG, Rombenso AN, Vieira FD, Martins MA, Coman GJ, Truong HH, Noble TH, Simon CJ (2022) Intensification of penaeid shrimp culture: an applied review of advances in production systems, nutrition and breeding. Animals 12:236

    Article  PubMed  PubMed Central  Google Scholar 

  • Estrada A, Estrada RC, Meritt D Jr, Bultrini DB, Klein A, Dewenter IS, Tscharntke T, Taniguchi K, Wang X, Collomb P (2011) World livestock 2011: livestock in food security. No FAO 363:W927

    Google Scholar 

  • Evans FD, Critchley AT (2014) Seaweeds for animal production use. J Appl Phycol 26:891–899

    Article  CAS  Google Scholar 

  • Fabrowska J, Messyasz B, Szyling J, Walkowiak J, Łeska B (2018) Isolation of chlorophylls and carotenoids from freshwater algae using different extraction methods. Phycol Res 66:52–57

    Article  CAS  Google Scholar 

  • Falkenmark M (2001) The greatest water problem: the inability to link environmental security, water security and food security. Int J Water Resour Dev 17:539–554

    Article  Google Scholar 

  • FAO (2016) The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. Food and Agricultural Organization of the United Nations, Italy, Rome, Italy. https://www.fao.org/3/I5555E/i5555e.pdf. Accessed 13 Jun 2023

  • Filipkowska A, Lubecki L, Szymczak–Żyła M, Kowalewska G, Żbikowski R, Szefer P (2008) Utilisation of macroalgae from the Sopot beach (Baltic Sea). Oceanologia 50:255–273

    Google Scholar 

  • Fleurence J (2016) Seaweeds as food. In: Fleurence J, Levine I (eds) Seaweed in health and disease prevention. Nikki Levy, San Diego, pp 149–167

    Chapter  Google Scholar 

  • Fleurence J (2022) Biostimulant Potential of Seaweed Extracts Derived from Laminaria and Ascophyllum nodosum. In: Ramawat N, Bhardwaj V (eds) Biostimulants: exploring sources and applications. Springer, Singapore, pp 31–49

    Chapter  Google Scholar 

  • Fleurence J, Morançais M, Dumay J, Decottignies P, Turpin V, Munier M, Garcia–Bueno N, Jaouen P (2012) What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture? Trends Food Sci. Technol 27:57–61

    CAS  Google Scholar 

  • Froehlich HE, Runge CA, Gentry RR, Gaines SD, Halpern BS (2018) Comparative terrestrial feed and land use of an aquaculture–dominant world. Proc Natl Acad Sci USA 115:5295–5300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaillard C, Bhatti HS, Novoa–Garrido M, Lind V, Roleda MY, Weisbjerg MR (2018) Amino acid profiles of nine seaweed species and their in situ degradability in dairy cows. Anim Feed Sci Technol 241:210–222

    Article  CAS  Google Scholar 

  • Ghareeb RY, Alfy H, Fahmy AA, Ali HM, Abdelsalam NR (2020) Utilization of Cladophora glomerata extract nanoparticles as eco–nematicide and enhancing the defense responses of tomato plants infected by Meloidogyne Javanica. Sci Rep 10:1–15

    Article  Google Scholar 

  • Ghosh R, Mitra A (2015) Suitability of green macroalgae Enteromorpha intestinalis as a feed form Macrobrachium rosenbergii. J Fish Livest Prod 3:138

    Google Scholar 

  • Ghosh D, Ghorai P, Debnath S, Indrama T, Kondi V, Tiwari ON (2022) Algal biofertilizer towards green sustainable agriculture. In: Singh HB, Vaishnav A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 27–45

    Chapter  Google Scholar 

  • Gillman R (2022) Challenges and prospects: reducing us methane emissions via red macroalgae (Asparagopsis taxiformis) feed additives to inhibit enteric methane production from ruminant livestock. Doctoral dissertation. Yale University, New Haven

  • Giri S, Daw TM, Hazra S, Troell M, Samanta S, Basu O, Marcinko CLJ, Chanda A (2022) Economic incentives drive the conversion of agriculture to aquaculture in the Indian Sundarbans: livelihood and environmental implications of different aquaculture types. Ambio 51:1963–1977

    Article  PubMed  PubMed Central  Google Scholar 

  • Gladyshev MI, Gubelit YI (2019) Green tides: new consequences of the eutrophication of natural waters (invited review). Contemp Probl Ecol 12:109–125

    Article  Google Scholar 

  • Godlewska K, Michalak I, Tuhy Ł, Chojnacka K (2016) Plant growth biostimulants based on different methods of seaweed extraction with water. BioMed Res Int 2016:5973760

    Article  PubMed  PubMed Central  Google Scholar 

  • Godlewska K, Michalak I, Tuhy Ł, Chojnacka K (2017) The influence of pH of extracting water on the composition of seaweed extracts and their beneficial properties on Lepidium sativum. BioMed Res Int 2017:7248634

    Article  PubMed  PubMed Central  Google Scholar 

  • Golubkov SM, Shadrin NV, Golubkov MS, Balushkina EV, Litvinchuk LF (2018) Food chains and their dynamics in ecosystems of shallow lakes with different water salinities. Russ J Ecol 49:442–448

    Article  CAS  Google Scholar 

  • Gosavi K, Sammut J, Gifford S, Jankowski J (2004) Macroalgal biomonitors of trace metal contamination in acid sulfate soil aquaculture ponds. Sci Total Environ 324:25–39

    Article  CAS  PubMed  Google Scholar 

  • Gubelit YI, Berezina NA (2010) The causes and consequences of algal blooms: the Cladophora glomerata bloom and the Neva estuary (eastern Baltic Sea). Mar Pollut Bull 61:183–188

    Article  CAS  PubMed  Google Scholar 

  • Gubelit YI, Makhutova ON, Sushchik NN, Kolmakova AA, Kalachova GS, Gladyshev MI (2015) Fatty acid and elemental composition of littoral “green tide” algae from the Gulf of Finland, the Baltic Sea. J Appl Phycol 27:375–386

    Article  CAS  Google Scholar 

  • Güroy BK, Cirik Ş, Güroy D, Sanver F, Tekinay AA (2007) Effects of Ulva rigida and Cystoseira barbata meals as a feed additive on growth performance, feed utilization, and body composition of Nile tilapia, Oreochromis niloticus. Turkish J Vet Anim Sci 31:91–97

    Google Scholar 

  • Hafezieh M, Ajdari D, Ajdehakosh PA, Hosseini SH (2014) Using Oman Sea Sargassum illicifolium meal for feeding white leg shrimp Litopenaeus vannamei. Iran J Fish Sci 13:73–80

    Google Scholar 

  • Hagerhall B (1973) Marine botanical–hydrographical trace element studies in the Oresund area. Bot Mar 16:53–64

    Article  CAS  Google Scholar 

  • Hall JR, Martin G (2021) Filtration of dissolved organic nutrients from fish farm wastewater using a macroalgae biofilter. In: Mambretti S (ed) Sustainable water resources management XI: effective approaches for river basins and urban Catchments, vol 250. WIT Press, Billerica, p 73

    Chapter  Google Scholar 

  • Han W, Clarke W, Pratt S (2014) Composting of waste algae: a review. Waste Manage 34:1148–1155

    Article  CAS  Google Scholar 

  • Han S, Park JS, Umanzor S, Yarish C, Kim JK (2022) Effects of extraction methods for a new source of biostimulant from Sargassum hornerion the growth of economically important red algae, Neopyropia yezoensis. Sci Rep 12:1–11

    Google Scholar 

  • Haq T, Khan FA, Begum R, Munshi AB (2011) Bioconversion of drifted seaweed biomass into organic compost collected from the Karachi coast. Pak J Bot 43:3049–3051

    Google Scholar 

  • Hasler CM (2002) Functional foods: benefits, concerns and challenges—a position paper from the American Council on Science and Health. J Nutr 132:3772–3781

    Article  CAS  PubMed  Google Scholar 

  • Hasnain M, Abideen Z, Anthony Dias D, Naz S, Munir N (2022) Utilization of saline water enhances lipid accumulation in green microalgae for the sustainable production of biodiesel. Bioenerg Res. https://doi.org/10.1007/s12155-022-10467-5

    Article  Google Scholar 

  • He M, Yang Y, Shao Z, Zhang J, Feng C, Wang L, Mao W (2021) Chemical structure and anticoagulant property of a novel sulfated polysaccharide from the green alga Cladophora oligoclada. Mar Drugs 19:554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heiba HI, Al–Easa HS, Rizk AFM (1997) Fatty acid composition of twelve algae from the coastal zones of Qatar. Plant Foods Hum Nutr 51:27–34

    Article  CAS  PubMed  Google Scholar 

  • Herbreteau FLJM, Coiffard LJM, Derrien A, De Roeck–Holtzhauer Y (1997) The fatty acid composition of five species of macroalgae. Bot Mar 40:25–27

    Article  CAS  Google Scholar 

  • Herrero M, Thornton PK, Notenbaert AM, Wood S, Msangi S, Freeman HA, Bossio D, Dixon J, Peters M, Van De Steeg J, Lynam J, Parthasarathy Rao P, Macmillan S, Gerard B, Mcdermott J, Seré C, Rosegrant M (2010) Smart investments in sustainable food production: revisiting mixed crop–livestock systems. Science 327:822–825

    Article  CAS  PubMed  Google Scholar 

  • Higgins SN, Malkin SY, Howell ET, Guildford SJ, Campbell L, Hiriart–Baer V, Hecky RE (2008) An ecological review of Cladophora glomerata (Chlorophyta) in the Laurentian Great Lakes. J Phycol 44:839–854

    Article  PubMed  Google Scholar 

  • Holdt S, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597

    Article  CAS  Google Scholar 

  • Horincar VB, Parfene G, Tyagi AK, Gottardi D, Dinica R, Guerzoni ME, Bahrim G (2014) Extraction and characterization of volatile compounds and fatty acids from red and green macroalgae from the Romanian Black Sea in order to obtain valuable bioadditives and biopreservatives. J Appl Phycol 26:551–559

    Article  CAS  Google Scholar 

  • Hosseinkhani N, McCauley JI, Ralph PJ (2022) Key challenges for the commercial expansion of ingredients from algae into human food products. Algal Res 64:102696

    Article  Google Scholar 

  • Illera–Vives M, Seoane Labandeira S, Lopez–Mosquera ME (2013) Production of compost from marine waste: evaluation of the product for use in ecological agriculture. J Appl Phycol 25:1395–1403

    Article  Google Scholar 

  • Illera–Vives M, Seoane Labandeira S, Brito LM, Lopez–Fabal A, Lopez–Mosquera ME (2015) Evaluation of compost from seaweed and fish waste as a fertilizer for horticultural use. Sci Horti 186:101–107

    Article  Google Scholar 

  • International Life Sciences Institute (1999) Safety assessment and potential health benefits of food components based on selected scientific criteria. Crit Rev Food Sci Nutr 39:203–206

    Article  Google Scholar 

  • Iqbal MM, Muhammad G, Aslam MS, Hussain MA, Shafiq Z, Razzaq H (2021) Algal Biofertilizer. In: Inamuddin I, Ahamed MI, Boddula R, Rezakazemi M (eds) Biofertilizers: study and impact. Wiley–Scrivener, New York, pp 607–635

    Chapter  Google Scholar 

  • Ishii S, Yan T, Shively DA, Byappanahalli MN, Whitman RL, Sadowsky MJ (2006) Cladophora (Chlorophyta) spp. harbor human bacterial pathogens in nearshore water of Lake Michigan. Appl Environ Microbiol 72:4545–4553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ITB–Vietnam (2011) Study on distribution and culture of seaweeds and aquatic plants in the Mekong delta, Vietnam. International cooperation plan. Algen Sustainable & Center Novem, Netherlands

  • Ito K, Hori K (1989) Seaweed: chemical composition and potential uses. Food Rev Int 5:101–144

    Article  CAS  Google Scholar 

  • Jasinski SM (2006) Phosphate rock, statistics and information. US Geological Survey, Reston

    Google Scholar 

  • Jeffery S, Verheijen FGA, Van Der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta–analysis. Agric Ecosyst Environ 44:175e187

    Google Scholar 

  • Johns RB, Nichols PD, Perry GJ (1979) Fatty acid composition of ten marine algae from Australian waters. Phytochemistry 18:799–802

    Article  CAS  Google Scholar 

  • Juijuljerm R, Vanijajiva O, Chittapun S (2021) The potential of using akinetes as seed starters for Cladophora glomerata cultivation: germination and growth of akinetes under different light intensities and humic concentrations. Algal Res 60:102478

    Article  Google Scholar 

  • Keeney WL, Breck WG, Vanloon GW, Page JA (1976) The determination of trace metals in Cladophora glomerate, C. glomerata as a potential biological monitor. Water Res 10:981–984

    Article  CAS  Google Scholar 

  • Khalafalla MM, El–Hais AEM (2015) Evaluation of seaweeds Ulva rigida and Pterocladia capillacea as dietary supplements in Nile tilapia fingerlings. J Aquac Res Dev 6:1–5

    Google Scholar 

  • Kholimenko IM, Konoplya AI, Bratchikov OI, Bystrova NA, Mavrin MY, Shatokhin MN (2017) Oxidative stress in acute serous and purulent pyelonephritis. Nephrology 21:87–94

    Google Scholar 

  • Khotimchenko SV (1993) Fatty acids of green macrophytic algae from the Sea of Japan. Phytochemistry 32:1203–1207

    Article  CAS  Google Scholar 

  • Khuantrairong T, Traichaiyaporn S (2011) The nutritional value of edible freshwater alga Cladophora sp. (Chlorophyta) grown under different phosphorus concentrations. Int J Agric Biol 13:297–300

    CAS  Google Scholar 

  • Khuantrairong T, Traichaiyaporn S (2012) Enhancement of carotenoid and chlorophyll content of an edible freshwater alga (Kai: Cladophora sp.) by supplementary inorganic phosphate and investigation of its biomass production. Maejo Int J Sci Technol 6:1–11

    CAS  Google Scholar 

  • Kinley RD, Vucko MJ, Machado L, Tomkins NW (2016) In vitro evaluation of the antimethanogenic potency and effects on fermentation of individual and combinations of marine macroalgae. Am J Plant Sci 7:2038–2054

    Article  CAS  Google Scholar 

  • Knapp JR, Laur GL, Vadas PA, Weiss WP, Tricarico JM (2014) Invited review: enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. J Dairy Sci 97:3231–3261

    Article  CAS  PubMed  Google Scholar 

  • Konkol D, Górniak W, Swiniarska M, Korczynski M (2018) Algae biomass in animal production. In: Chojnacka K, Wieczorek PP, Schroeder G, Michalak I (eds) Algae biomass: characteristics and applications. Springer International Publishing, Cham, pp 123–130

    Chapter  Google Scholar 

  • Kotlova ER, Shadrin NV (2003) The role of membrane lipids in adaptation of Cladophora (Chlorophyta) to living in shallow lakes with different salinity. Bot Zh 88:38–45 (in Russian)

    CAS  Google Scholar 

  • Kowalczyk P, Ligas B, Skrzypczak D, Mikula K, Izydorczyk G, Witek–Krowiak A, Moustakas K, Chojnacka K (2021) Biosorption as a method of biowaste valorization to feed additives: RSM optimization. Environ Pollut 268:115937

    Article  CAS  PubMed  Google Scholar 

  • Kraan S (2022) Seaweeds and their products for the health of livestock. In: Ranga Rao A, Ravishankar GA (eds) Sustainable global resources of seaweeds, vol 1. Springer, Cham, pp 331–356

    Chapter  Google Scholar 

  • Kumar G, Sahoo D (2011) Effect of seaweed liquid extract on growth and yield of Triticum aestivum var. Pusa Gold J Appl Phycol 23:251–255

    Article  Google Scholar 

  • Lacatusu R, Lacatusu AR, Capatana R, Lungu M, Lazar R, Moraru IR (2017) The effect of an organic waste compost on the agro–chemical characteristics of the soil, and the mineral composition of the sunflower leaves. Present Environ Sustain Dev 1:99–108

    Article  Google Scholar 

  • Lacerda LD, Fernandez MA, Calazans CF, Tanizaki KF (1992) Bioavailability of heavy metals in sediments of two coastal lagoons in Rio de Janeiro, Brazil. Hydrobiologia 228:65–70

    Article  CAS  Google Scholar 

  • Lawton RJ, Cole AJ, Roberts DA, Paul NA, de Nys R (2017) The industrial ecology of freshwater macroalgae for biomass applications. Algal Res 24:486–491

    Article  Google Scholar 

  • Lawton RJ, Glasson CR, Novis PM, Sutherland JE, Magnusson ME (2021) Productivity and municipal wastewater nutrient bioremediation performance of new filamentous green macroalgal cultivars. J Appl Phycol 33:4137–4148

    Article  CAS  Google Scholar 

  • Lemessa F (2022) Review on seaweed as animal feed and its impact in reducing environmental impact. MSc thesis. Haramaya University, Haramaya

  • Leonard SG, Sweeney T, Pierce KM, Bahar B, Lynch BP, O’doherty JV (2010) The effects of supplementing the diet of the sow with seaweed extracts and fish oil on aspects of gastrointestinal health and performance of the weaned piglet. Livest Sci 134:135–138

    Article  Google Scholar 

  • Lewandowska S, Marczewski K, Kozak M, Ohkama–Ohtsu N, Łabowska M, Detyna J, Michalak I (2022) Impact of freshwater macroalga (Cladophora glomerata) extract on the yield and morphological responses of Glycine max (L.) Merr. Agriculture 12:685

    Article  Google Scholar 

  • Ligas B, Warchoł J, Skrzypczak D, Witek–Krowiak A, Chojnacka K (2022) Valorization of biomass residues by biosorption of microelements in a closed–loop cycle. Waste Biomass Valor 13:1913–1929

    Article  CAS  Google Scholar 

  • Littler MM, Arnold KE (1982) Primary productivity of marine macroalgal functional–form groups from southwestern North America. J Phycol 18:307–311

    Article  Google Scholar 

  • Liu X, Liu W, Tang Q, Liu B, Wada Y, Yang H (2022) Global agricultural water scarcity assessment incorporating blue and green water availability under future climate change. Earth’s Future 10:e2021EF002567

    Article  Google Scholar 

  • Lopez–Mosquera ME, Fernandez–Lema E, Villares R, Corral R, Alonso B, Blanco C (2011) Composting fish waste and seaweed to produce a fertilizer for use in organic agriculture. Procedia Environ Sci 9:113–117

    Article  Google Scholar 

  • Lozano Muñoz I, Díaz NF (2020) Minerals in edible seaweed: health benefits and food safety issues. Crit Rev Food Sci Nutr 62:1592–1607

    Article  PubMed  Google Scholar 

  • Lyons DA, Arvanitidis C, Blight AJ, Chatzinikolaou E, Guy–Haim T, Kotta J, Orav–Kotta H, Queirós AM, Rilov G, Somerfield PJ, Crowe TP (2014) Macroalgal blooms alter community structure and primary productivity in marine ecosystems. Glob Chan Boil 20:2712–2724

    Article  Google Scholar 

  • Mabeau S, Fleurence J (1993) Seaweed in food products: biochemical and nutritional aspects. Trends Food Sci Technol 4:103–107

    Article  CAS  Google Scholar 

  • Machado L, Magnusson M, Paul NA, de Nys R, Tomkins N (2014) Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS One 9:e85289

    Article  PubMed  PubMed Central  Google Scholar 

  • Machado L, Kinley RD, Magnusson M, de Nys R, Tomkins NW (2015) The potential of macroalgae for beef production systems in Northern Australia. J Appl Phycol 27:2001–2005

    Article  CAS  Google Scholar 

  • Maddi B, Viamajala S, Varanasi S (2011) Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass. Bioresour Technol 102:11018–11026

    Article  CAS  PubMed  Google Scholar 

  • Mahadik BB, Kabnoorkar PS (2020) Effect of different algal powder on growth and productivity of Moongbean (Phaseolus radiata). Flora and Fauna 26:22–28

    Article  Google Scholar 

  • Mahapatra DM, Satapathy KC, Panda B (2022) Biofertilizers and nanofertilizers for sustainable agriculture: phycoprospects and challenges. Sci Total Environ 803:149990

    Article  CAS  PubMed  Google Scholar 

  • Mahrose KM, Michalak I (2022) Seaweeds for animal feed, current status, challenges, and opportunities. In: Ranga Rao A, Ravishankar GA (eds) Sustainable global resources of seaweeds, vol 1. Springer, Cham, pp 357–379

    Chapter  Google Scholar 

  • Makkar HP, Tran G, Heuzé V, Giger–Reverdin S, Lessire M, Lebas F, Ankers P (2016) Seaweeds for livestock diets: a review. Anim Feed Sci Technol 212:1–7

    Article  CAS  Google Scholar 

  • Maré FA, Jordaan H, Mekonnen MM (2020) The water footprint of primary cow–calf production: a revised bottom–up approach applied on different breeds of beef cattle. Water 12:2325

    Article  Google Scholar 

  • Marega Filho M, Destro D, Miranda LA, Spinosa WA, Carrão–Panizzi MC, Montalván R (2001) Relationships among oil content, protein content and seed size in soybeans. Braz Arch Biol Technol 44:23–32

    Article  CAS  Google Scholar 

  • Marsham S, Scott GW, Tobin ML (2007) Comparison of nutritive chemistry of a range of temperate seaweeds. Food Chem 100:1331–1336

    Article  CAS  Google Scholar 

  • Marycz K, Michalak I, Kocherova I, Marezdziak M, Weiss C (2017) The Cladophora glomerata enriched by biosorption process in Cr (III) improves viability, and reduces oxidative stress and apoptosis in equine metabolic syndrome derived adipose mesenchymal stromal stem cells (ASCs) and their extracellular vesicles (MV’s). Mar Drugs 15:385

    Article  PubMed  PubMed Central  Google Scholar 

  • Messyasz B, Leska B, Fabrowska J, Pikosz M, Roj E, Cieslak A, Schroeder G (2015) Biomass of freshwater Cladophora as a raw material for agriculture and the cosmetic industry. Open Chem 13:1108–1118

    Article  CAS  Google Scholar 

  • Metting B, Zimmerman WJ, Crouch I, van Staden J (1990) Agronomic uses of seaweed and microalgae. In: Akatsuka I (ed) Introduction to applied phycology. SPB Academic Publishing, Hague, pp 589–628

    Google Scholar 

  • Michalak I (2020) Seaweed resources of Poland. Bot Mar 63:73–84

    Article  Google Scholar 

  • Michalak I, Baśladyńska S (2021) Effect of Fucus extract and biomass enriched with Cu (II) and Zn (II) ions on the growth of garden cress Lepidium sativum under laboratory conditions. Ital J Agron 16:799

    Google Scholar 

  • Michalak I, Chojnacka K (2009) Edible macroalga Ulva prolifera as microelemental feed supplement for livestock: the fundamental assumptions of the production method. World J Microbiol Biotechnol 25:997–1005

    Article  CAS  Google Scholar 

  • Michalak I, Chojnacka K (2013) Algal compost–toward sustainable fertilization. Rev Inorg Chem 33:161–172

    Article  CAS  Google Scholar 

  • Michalak I, Messyasz B (2021) Concise review of Cladophora spp.: macroalgae of commercial interest. J Appl Phycol 33:133–166

    Article  CAS  Google Scholar 

  • Michalak I, Chojnacka K, Dobrzański Z, Górecki H, Zielińska A, Korczyński M, Opaliński S (2011) Effect of macroalgae enriched with microelements on egg quality parameters and mineral content of eggs, eggshell, blood, feathers and droppings. J Anim Physiol Anim Nutr 95:374–387

    Article  CAS  Google Scholar 

  • Michalak I, Tuhy Ł, Chojnacka K (2014) Extraction of seaweed with potassium lye. Przem Chem 93:771–774

    CAS  Google Scholar 

  • Michalak I, Chojnacka K, Korniewicz D (2015a) New feed supplement from macroalgae as the dietary source of microelements for pigs. Open Chem 13:1341–1352

    Article  CAS  Google Scholar 

  • Michalak I, Tuhy Ł, Chojnacka K (2015b) Seaweed extract by microwave assisted extraction as plant growth biostimulant. Open Chem 13:1183–1195

    Article  CAS  Google Scholar 

  • Michalak I, Chojnacka K, Dmytryk A, Wilk R, Gramza M, Rój E (2016a) Evaluation of Supercritical Extracts of algae as biostimulants of plant growth in field trials. Front Plant Sci 7:1591

    Article  PubMed  PubMed Central  Google Scholar 

  • Michalak I, Górka B, Wieczorek PP, Rój E, Lipok J, Łęska B, Messyasz B, Wilk R, Schroeder G, Dobrzyńska–Inger A, Chojnacka K (2016b) Supercritical fluid extraction of algae enhances levels of biologically active compounds promoting plant growth. Eur J Phycol 51:243–252

    Article  CAS  Google Scholar 

  • Michalak I, Dmytryk A, Schroeder G, Chojnacka K (2017a) The application of homogenate and filtrate from Baltic seaweeds in seedling growth tests. Appl Sci 7:1–19

    Article  Google Scholar 

  • Michalak I, Miller U, Tuhy Ł, Sówka I, Chojnacka K (2017b) Characterisation of biological properties of co–composted Baltic seaweeds in germination tests. Eng Life Sci 17:153–164

    Article  CAS  PubMed  Google Scholar 

  • Michalak I, Wilk R, Chojnacka K (2017c) Bioconversion of Baltic seaweeds into organic compost. Waste Biomass Valori 8:1885–1895

    Article  CAS  Google Scholar 

  • Michalak I, Lewandowska S, Detyna J, Olsztyńska–Janus S, Bujak H, Pacholska P (2018a) The effect of macroalgal extracts and near infrared radiation on germination of soybean seedlings: preliminary research results. Open Chem 16:1066–1076

    Article  CAS  Google Scholar 

  • Michalak I, Mironiuk M, Marycz K (2018b) A comprehensive analysis of biosorption of metal ions by macroalgae using ICP–OES, SEMEDX and FTIR techniques. Plos One 13:0205590

    Article  Google Scholar 

  • Michalak I, Baśladyńska S, Mokrzycki J, Rutkowski P (2019) Biochar from a freshwater macroalga as a potential biosorbent for wastewater treatment. Water 11:4–6

    Article  Google Scholar 

  • Michalak M, Wojnarowski K, Cholewińska P, Szeligowska N, Bawej M, Pacoń J (2021) Selected alternative feed additives used to manipulate the rumen microbiome. Animals 11:1542

    Article  PubMed  PubMed Central  Google Scholar 

  • Michalak I, Dziergowska K, Alagawany M, Farag MR, El–Shall NA, Tuli HS, Emran TB, Dhama K (2022) The effect of metal–containing nanoparticles on the health, performance and production of livestock animals and poultry. Vet Q 42:68–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mihranyan A (2011) Cellulose from cladophorales green algae: from environmental problem to high–tech composite materials. J Appl Polym Sci 119:2449–2460

    Article  CAS  Google Scholar 

  • Miles RD, Henry PR (2000) Relative trace mineral bioavailability. Cienc Anim Bras 1:73–92

    Google Scholar 

  • Mishra A, Sahni S, Kumar S, Prasad BD (2020) Seaweed–an eco–friendly alternative of agrochemicals in sustainable agriculture. Curr J Appl Sci Technol 39:71–78

    Article  Google Scholar 

  • Morais T, Inácio A, Coutinho T, Ministro M, Cotas J, Pereira L, Bahcevandziev K (2020) Seaweed potential in the animal feed: a review. J Mar Sci Eng 8:559

    Article  Google Scholar 

  • Mueangtoom K (2019) Effect of fed diets supplemented with mixed green algae, Cladophora sp. & Rhizoclonium sp. on chemical composition and growth performance of fancy carp (Cyprinus carpio). Burapha Sci J 24:1177–1189

    Google Scholar 

  • Muíños A, López–Alonso M (2022) Marine macroalgae in rabbit nutrition – a valuable feed in sustainable farming. Animals 12:2346

    Article  PubMed  PubMed Central  Google Scholar 

  • Munda IM, Hudnik V (1991) Trace metal content in some seaweeds from the Northern Adriatic. Bot Mar 34:241–249

    Article  CAS  Google Scholar 

  • Munir M, Qureshi R, Bibi M, Khan AM (2019) Pharmaceutical aptitude of Cladophora: a comprehensive review. Algal Res 39:101476

    Article  Google Scholar 

  • Nakagawa H, Kasahara S, Sugiyama T (1987) Effect of Ulva meal supplementation on lipid metabolism of black sea bream, Acanthopagrus schlegeli (Bleeker). Aquaculture 62:109–121

    Article  Google Scholar 

  • Nami N, Ebadi SF, Otaghsara SFT, Baei M, Rahimi ES (2016) GC–MS analysis and preliminary test of phytochemical screening of crude ethanolic extract of green algae, Cladophora glomerata (L.) Kütz from Caspian Sea. Iran J Org Chem 8:1899–1907

    Google Scholar 

  • Neveux N, Yuen A, Jazrawi C, He Y, Magnusson M, Haynes BS, Masters AF, Montoya A, Paul NA, Maschmeyer T, de Nys R (2014a) Pre– and post–harvest treatment of macroalgae to improve the quality of feedstock for hydrothermal liquefaction. Algal Res 6:22–631

    Article  Google Scholar 

  • Neveux N, Yuen AKL, Jazrawi C, Magnusson M, Haynes BS, Masters AF, Montoya A, Paul NA, Maschmeyer T, de Nys R (2014b) Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae. Bioresour Technol 155:334–341

    Article  CAS  PubMed  Google Scholar 

  • Noli ZA, Aliyyanti P (2021) Effect of liquid seaweed extracts as biostimulant on vegetative growth of soybean. IOP Conf Ser: Earth Environ Sci 759:012029

    Google Scholar 

  • Nutautaitė M, Vilienė V, Racevičiūtė–Stupelienė A, Bliznikas S, Karosienė J, Koreivienė J (2021) Freshwater Cladophora glomerata biomass as promising protein and other essential nutrients source for high quality and more sustainable feed production. Agriculture 11:582

    Article  Google Scholar 

  • Nutautaitė M, Racevičiūtė–Stupelienė A, Bliznikas S, Jonuškienė I, Karosienė J, Koreivienė J, Vilienė V (2022) Evaluation of phenolic compounds and pigments in freshwater Cladophora glomerata biomass from various Lithuanian rivers as a potential future raw material for biotechnology. Water 14:1138

    Article  Google Scholar 

  • Nutautaitė M, Racevičiūtė–Stupelienė A, Bliznikas S, Vilienė V (2023) Enhancement of rabbit meat functionality by replacing traditional feed raw materials with alternative and more sustainable freshwater Cladophora glomerata macroalgal biomass in their diets. Foods 12:744

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogburn DM, White I (2011) Integrating livestock production with crops and saline fish ponds to reduce greenhouse gas emissions. J Integr Environ Sci 8:39–52

    Article  Google Scholar 

  • Ozer A, Akkayaa G, Turabik M (2005) Biosorption of Acid Red 274 (AR 274) on Enteromorpha prolifera in a batch system. J Hazard Mater 126:119–127

    Article  PubMed  Google Scholar 

  • Paine RT, Vadas RL (1969) Calorific values of benthic marine algae and their postulated relation to invertebrate food preference. Mar Biol 4:79–86

    Article  Google Scholar 

  • Panayotova V, Stancheva M, Dobreva D (2013) Alpha–tocopherol and ergocalciferol contents of some macroalgae from Bulgarian Black Sea coast. Ovidius Univ Ann Chem 24:13–16

    CAS  Google Scholar 

  • Panda D, Pramanik K, Nayak BR (2012) Use of sea weed extracts as plant growth regulators for sustainable agriculture. Int J Bio–Resour Stress Manag 3:404–411

    Google Scholar 

  • Pandey D, Mansouryar M, Novoa–Garrido M, Næss G, Kiron V, Hansen HH, Nielsen MO, Khanal P (2021) Nutritional and anti–methanogenic potentials of macroalgae for ruminants. In: Lei XG (ed) Seaweed and microalgae as alternative sources of protein. Burleigh Dodds Science Publishing, Cambridge, pp 195–228

    Chapter  Google Scholar 

  • Peerapornpisal Y, Amornledpison D, Rujjanawate C, Ruangrit K, Kanjanapothi D (2006) Two endemic species of macroalgae in Nan river, northern Thailand, as therapeutic agents. Sci Asia 32:71–76

    Article  Google Scholar 

  • Pengzhan Y, Quanbin Z, Ning L, Zuhong X, Yanmei W, Zhien L (2003) Polysaccharides from Ulva pertusa (Chlorophyta) and preliminary studies on their antihyperlipidemia activity. J Appl Phycol 15:21–27

    Article  Google Scholar 

  • Percival E, McDowell RH (1981) Algal walls: Composition and biosynthesis. In: Tanner W, Loewus FA (eds) Encyclopedia of plant physiology, vol 13B. Springer, Berlin, pp 277–316

    Google Scholar 

  • Pereira L (2010) Seaweed: an unsuspected gastronomic treasury. Chaine De Rotisseurs Magazine 2:50

    Google Scholar 

  • Pereira L (2011) A review of the nutrient composition of selected edible seaweeds. In: Pomin VH (ed) Seaweed: ecology, nutrient composition and medicinal uses. Nova Science Publishers, Hauppauge, pp 15–47

    Google Scholar 

  • Pikosz M, Czerwik–Marcinkowska J, Messyasz B (2019) The effect of Cladophora glomerata exudates on the amino acid composition of Cladophora fracta and Rhizoclonium sp. Open Chem 17:313–324

    Article  CAS  Google Scholar 

  • Piwowar A, Harasym J (2020) The importance and prospects of the use of algae in agribusiness. Sustainability 12:5669

    Article  CAS  Google Scholar 

  • Plis A, Lasek J, Skawińska A, Zuwała J (2015) Thermochemical and kinetic analysis of the pyrolysis process in Cladophora glomerata algae. J Anal Appl Pyrol 115:166–174

    Article  CAS  Google Scholar 

  • Pradeepkiran JA (2019) Aquaculture role in global food security with nutritional value: a review. Transl Anim Sci 3:903–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prazukin AV (2015) Ecological phytosystemology. Pero Press, Moscow (in Russian)

    Google Scholar 

  • Prazukin AV, Bobkova AN, Evstigneeva IK, Tankovska IN, Shadrin NV (2008) Structure and seasonal dynamics of the phytocomponent of the bioinert system marine hypersaline lake on cape of Chersonesus (Crimea). Mar Biol J 7:61–79 (in Russian)

    Google Scholar 

  • Prazukin AV, Anufriieva EV, Shadrin NV (2018) Cladophora mats in a Crimean hypersaline lake: structure, dynamics, and inhabiting animals. J Oceanol Limnol 36:1930–1940

    Article  CAS  Google Scholar 

  • Prazukin AV, Anufriieva EV, Shadrin NV (2019) Photosynthetic activity of green filamentous algae mats in the hypersaline lake Chersonesskoye (Crimea). Bull Tver State Univ. Ser: Biol Ecol 2:87–102 (in Russian)

  • Prazukin AV, Anufriieva EV, Shadrin NV (2020) Is biomass of filamentous green algae Cladophora spp. (Chlorophyta, Ulvophyceae) an unlimited cheap and valuable resource for medicine and pharmacology? A review. Rev Aquac 12:2493–2510

    Article  Google Scholar 

  • Prazukin AV, Firsov YuK, Gureeva EV, Kapranov SV, Zheleznova SN, Maoka T, Nekhoroshev MV (2021) Biomass of green filamentous alga Cladophora (Chlorophyta) from a hypersaline lake in Crimea as a prospective source of lutein and other pigments. Algal Res 54:102195

    Article  Google Scholar 

  • Promya J, Chitmanat C (2011) The effects of Spirulina platensis and Cladophora algae on the growth performance, meat quality and immunity stimulating capacity of the African Sharptooth Catfish (Clarias gariepinus). Int J Agric Biol 13:77–82

    Google Scholar 

  • Purnamasari L, Carreon JM, dela Cruz JF (2022) Benefits of green seaweed as protein source for broiler: a review. J Livest Sci Prod 6:381–400

    Google Scholar 

  • Quilliam RS, van Niekerk MA, Chadwick DR, Cross P, Hanley N, Jones DL, Vinten AJA, Willby N, Oliver DM (2015) Can macrophyte harvesting from eutrophic water close the loop on nutrient loss from agricultural land? J Environ Manage 152:210–217

    Article  CAS  PubMed  Google Scholar 

  • Rao PS, Mantri VA, Ganesan K (2007) Mineral composition of edible seaweed Porphyra vietnamensis. Food Chem 102:215–218

    Article  CAS  Google Scholar 

  • Richter BD, Bartak D, Caldwell P, Davis KF, Debaere P, Hoekstra AY, Li T, Marston L, McManamay R, Mekonnen MM, Ruddell BL, Rushforth RR, Troy TJ (2020) Water scarcity and fish imperilment driven by beef production. Nat Sustain 3:319–328

    Article  Google Scholar 

  • Robinson TP, Thornton PK, Francesconi GN, Kruska RL, Chiozza F, Notenbaert AMO, Cecchi G, Herrero M, Epprecht M, Fritz S, You L, Conchedda G, See L (2011) Global livestock production systems. FAO and ILRI, Rome

    Google Scholar 

  • Rodríguez–González H, Orduña–Rojas J, Villalobos–Medina JP, García–Ulloa M, Polanco–Torres A, López–Álvarez ES, Montoya–Mejía M, Hernández–Llamas A (2014) Partial inclusion of Ulva lactuca and Gracilaria parvispora meal in balanced diets for white leg shrimp (Litopenaeus vannamei). J Appl Phycol 26:2453–2459

    Article  Google Scholar 

  • Roman CT, Able KW, Lazzari MA, Heck KL (1990) Primary productivity of angiosperm and macroalgae dominated habitats in a New England salt marsh: a comparative analysis. Estuar Coast Shelf Sci 30:35–45

    Article  Google Scholar 

  • Ross ME, Davis K, McColl R, Stanley MS, Day JG, Semião AJ (2018) Nitrogen uptake by the macro–algae Cladophora coelothrix and Cladophora parriaudii: influence on growth, nitrogen preference and biochemical composition. Algal Res 30:1–10

    Article  Google Scholar 

  • Sawidis T, Brown MT, Zachariadis G, Sratis I (2001) Trace metal concentrations in marine macroalgae from different biotopes in the Aegean Sea. Environ Int 27:43–47

    Article  CAS  PubMed  Google Scholar 

  • Schönfeld–Leber B (1979) Marine algae as human food in Hawaii, with notes on other Polynesian islands. Ecol Food Nutr 8:47–59

    Article  Google Scholar 

  • Schyns JF, Hoekstra AY, Booij MJ, Hogeboom RJ, Mekonnen MM (2019) Limits to the world’s green water resources for food, feed, fiber, timber, and bioenergy. Proc Natl Acad Sci USA 116:4893–4898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shadrin NV (2018) The alternative saline lake ecosystem states and adaptive environmental management. J Oceanol Limnol 36:2010–2017

    Article  Google Scholar 

  • Shadrin NV, Anufriieva EV (2013) Climate change impact on the marine lakes and their Crustaceans: the case of marine hypersaline Lake Bakalskoye (Ukraine). Turkish J Fish Aquat Sci 13:603–611

    Google Scholar 

  • Shah Z, Badshah SL, Iqbal A, Shah Z, Emwas AH, Jaremko M (2022a) Investigation of important biochemical compounds from selected freshwater macroalgae and their role in agriculture. Chem Biol Technol Agric 9:1–11

    Article  CAS  Google Scholar 

  • Shah Z, Badshah S, Iqbal A, Emwas AH, Jaremko M (2022b) GC–MS based metabolomics and lipidiomics analyses of selected freshwater green macroalgae. Res Sq. https://doi.org/10.21203/rs.3.rs-1324666/v1

    Article  PubMed  PubMed Central  Google Scholar 

  • Shutova VV, Tyutyaev EV, Veselova TV, Choob VV, Maksimov GV (2017) Dark adaptation and conformations of carotenoids in the cells of Cladophora aegagropila (L). Rabenh. Biophysics 62:728–733

    Article  CAS  Google Scholar 

  • Singh SB, Singh N (2019) Nepal livestock feed balance and strategies to address the feed deficit. J Agric Forest Univ 3:159–171

    Google Scholar 

  • Sirakaya S (2023) Pros and cons of Ulva lactuca and Cladophora glomerata grown in freshwater as feed. Environ Sci Pollut Res 30:33446–33454

    Article  Google Scholar 

  • Sirbu R (2020) Bioactive compounds from three green algae species along Romanian Black Sea coast with therapeutically properties. Eur J Nat Sci Med 3:87–106

    Google Scholar 

  • Sivalingam PM (1978) Biodeposited trace metals and mineral content studies of some tropical marine algae. Bot Mar 21:327–330

    Article  CAS  Google Scholar 

  • Spillias S, Valin H, Batka M, Sperling F, Havlík P, Leclère D, Cottrell RS, O’Brien KR, McDonald–Madden E (2023) Reducing global land–use pressures with seaweed farming. Nat Sustain. https://doi.org/10.1038/s41893-022-01043-y

    Article  Google Scholar 

  • Stabili L, Acquaviva MI, Biandolino F, Cavallo RA, De Pascali SA, Fanizzi FP, Narracci M, Cecere E, Petrocelli A (2014) Biotechnological potential of the seaweed Cladophora rupestris (Chlorophyta, Cladophorales) lipidic extract. N Biotechnol 31:436–444

    Article  CAS  PubMed  Google Scholar 

  • Stefanov K, Konaklieva M, Brechany EY, Christie WW (1988) Fatty acid composition of some algae from the Black Sea. Phytochemistry 27:3495–3497

    Article  CAS  Google Scholar 

  • Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, De Haan C (2006) Livestock’s long shadow: environmental issues and options. FAO, Rome

    Google Scholar 

  • Stern HL, Armstrong DA, Knight AW, Chippendale DJ (1976) Survival and growth of juveniles of the giant Malaysian prawn, Macrobrachium rosenbergii, fed natural plant diets. Proc World Maricult Soc 7:667–675

    Article  Google Scholar 

  • Strømme M, Mihranyan A, Ek R (2002) What to do with all these algae? Mater Lett 57:569–572

    Article  Google Scholar 

  • Sunarpi S, Jupri A, Kurnianingsih R, Julisaniah NI, Nikmatullah A (2011) Effect of seaweed extracts on growth and yield of rice plants. Asian J Trop Biotechnol 8:73–77

    Google Scholar 

  • Surayot U, Lee JH, Park W, You S (2016) Structural characteristics of polysaccharides extracted from Cladophora glomerata Kützing affecting nitric oxide releasing capacity of RAW264.7 cells. Bioact Carbohydr Diet Fibre 7:26–31

    Article  CAS  Google Scholar 

  • Szefer P, Skwarzec B (1988) Concentration of elements in some seaweeds from coastal region of the southern Baltic and in the Zarnowiec Lake. Oceanologia 25:87–98

    Google Scholar 

  • Thorslund J, Bierkens MF, Oude Essink GH, Sutanudjaja EH, van Vliet MT (2021) Common irrigation drivers of freshwater salinisation in river basins worldwide. Nat Commun 12:1–3

    Article  Google Scholar 

  • Tilden JE (1937) The algae and their life relations. Hafner, New York

    Google Scholar 

  • Topal M, Arslan Topal EI, Öbek E (2022) A green algae Cladophora fracta for accumulation of toxic/harmful pollutants causing environmental pollution in mine gallery waters. Int J Environ Sci Technol 19:4481–4490

    Article  CAS  Google Scholar 

  • Tuhy Ł, Chowańska J, Chojnacka K (2013) Ekstrakty glonowe jako biostymulatory wzrostu roślin: przegląd piśmiennictwa. Chemik 67:636–641

    CAS  Google Scholar 

  • Tuhy Ł, Samoraj M, Michalak I, Chojnacka K (2014) The application of biosorption for production of micronutrient fertilizers based on waste biomass. Appl Biochem Biotechnol 174:1376–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulloa MJ, Álvarez–Torres P, Horak–Romo KP, Ortega–Izaguirre R (2017) Harmful algal blooms and eutrophication along the mexican coast of the Gulf of Mexico large marine ecosystem. Environ Dev 22:120–128

    Article  Google Scholar 

  • Vaskovsky VE, Khotimchenko SV, Xia B, Hefang L (1996) Polar lipids and fatty acids of some marine macrophytes from the Yellow Sea. Phytochemistry 42:1347–1356

    Article  CAS  Google Scholar 

  • Velasco–Muñoz JF, Aznar–Sánchez JA, Belmonte–Ureña LJ, Román–Sánchez IM (2018) Sustainable water use in agriculture: a review of worldwide research. Sustainability 10:1084

    Article  Google Scholar 

  • Venkataraman LV, Nigam BP, Ramanatham PK (1980) Rural oriented fresh water cultivation and production of algae in India. In: Shelef G, Soeder CJ (eds) Algae Biomass. Elsevier, Amsterdam, pp 81–95

    Google Scholar 

  • Wan AH, Davies SJ, Soler–Vila A, Fitzgerald R, Johnson MP (2019) Macroalgae as a sustainable aquafeed ingredient. Rev Aquac 11:458–492

    Article  Google Scholar 

  • Wang J, Beusen AH, Liu X, Bouwman AF (2019) Aquaculture production is a large, spatially concentrated source of nutrients in Chinese freshwater and coastal seas. Environ Sci Technol 54:1464–1474

    Article  PubMed  Google Scholar 

  • Wang JJ, Chen QY, Liu L, Yang L, Zhang Z, Zhang Q, Cao D (2022) Effects of lead on Cladophora rupestris: localization, subcellular distribution, and cell ultrastructure. Bioremediat J 26:20–30

    Article  CAS  Google Scholar 

  • Watzke HJ (1998) Impact of processing on bioavailability examples of minerals in foods. Trends Food Sci Technol 9:320–327

    Article  CAS  Google Scholar 

  • Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH (2017) Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 29:949–982

    Article  CAS  PubMed  Google Scholar 

  • Wilk R, Górecki H, Chojnacka K (2013) Analysis of the availability and possibility of recovering the algal biomass from Baltic Sea. Przem Chem 92:1075–1077

    CAS  Google Scholar 

  • Wissel H, Mayr C, Lücke A (2008) A new approach for the isolation of cellulose from aquatic plant tissue and freshwater sediments for stable isotopeanalysis. Org Geochem 3:1545–1561

    Article  Google Scholar 

  • Wong K, Cheung PC (2000) Nutritional evaluation of some subtropical red and green seaweeds: Part I—proximate composition, amino acid profiles and some physico–chemical properties. Food Chem 71:475–482

    Article  CAS  Google Scholar 

  • World Bank (2007) World development report 2008: agriculture for development. World Bank, Washington

    Book  Google Scholar 

  • Wu G (2022) Nutrition and metabolism: foundations for animal growth, development, reproduction, and health. Adv Exp Med Biol 1354:1–24

    Article  PubMed  Google Scholar 

  • Xing W, Wu H, Hao B, Huang W, Liu G (2013) Bioaccumulation of heavy metals by submerged macrophytes: looking for hyperaccumulators in eutrophic lakes. Environ Sci Technol 47:4695e4703

    Article  Google Scholar 

  • Yao Y, Wang X, Chen B, Zhang M, Ma J (2020) Seaweed extract improved yields, leaf photosynthesis, ripening time, and net returns of tomato (Solanum lycopersicum Mill.). ACS Omega 5:4242–4249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yap WG, Villaluz AC, Soriano MGG, Santos MN (2007) Milkfish production and processing technologies in the Philippines. Milkfish Project Publication Series 2:26–31

    Google Scholar 

  • Zafar A, Ali I, Rahayu F (2022) Marine seaweeds (biofertilizer) significance in sustainable agricultural activities: a review. IOP Conf Ser: Earth Environ Sci 974:012080

    Google Scholar 

  • Žáková Z, Kočková E (1999) Biomonitoring and assessment of heavy metal contamination of streams and reservoirs in the Dyje/Thaya river basin, Czech Republic. Water Sci Technol 39:225–232

    Article  Google Scholar 

  • Zbikowski R, Szefer P, Latała A (2007) Comparison of green algae Cladophora sp. and Enteromorpha sp. as potential biomonitors of chemical elements in the southern Baltic. Sci Total Environ 387:320–332

    Article  CAS  PubMed  Google Scholar 

  • Zemke–White WL, Clements KD (1999) Chlorophyte and rhodopyhte starches as factors in diet choice by marine herbivorous fish. J Exp Mar Biol Ecol 240:137–149

    Article  Google Scholar 

  • Zemke–White WL, Ohno M (1999) World seaweed utilisation: an end–of–century summary. J Appl Phycol 11:369–376

    Article  Google Scholar 

  • Zhang W, Belton B, Edwards P, Henriksson PJG, Little DC, Newton R, Troell M (2022) Aquaculture will continue to depend more on land than sea. Nature 603:E2–E4

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Nyholm L, Strømme M, Wang Z (2019) Cladophora cellulose: unique biopolymer nanofibrils for emerging energy, environmental, and life science applications. Acc Chem Res 52:2232–2243

    Article  CAS  PubMed  Google Scholar 

  • Zrimec MB, Malta E, Dunbar MB, Cerar A, Reinhardt R, Mihelič R (2022) Wastewater cultivated macroalgae as a bio–resource in agriculture. Sustain Glob Resour Seaweeds 1:435–449

    Google Scholar 

Download references

Acknowledgements

The authors thank Bindy Datson (Australia) for her help to improve English.

Funding

The study was conducted in the framework of the state assignment of A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS (№ 121041500203–3).

Author information

Authors and Affiliations

Authors

Contributions

A.P. and N.S.Conceptualization; A.P., E.A. and N.S.Methodology; A.P., E.A. and N.S.Formal Analysis; A.P. and N.S.Writing – Original Draft Preparation; A.P., E.A. and N.S. Writing – Review & Editing; E.A. Supervision.

Corresponding author

Correspondence to Elena V. Anufriieva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Handling Editor: Ronan Sulpice

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prazukin, A.V., Anufriieva, E.V. & Shadrin, N.V. Biomass of Cladophora (Chlorophyta, Cladophorales) is a promising resource for agriculture with high benefits for economics and the environment. Aquacult Int (2023). https://doi.org/10.1007/s10499-023-01342-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10499-023-01342-x

Keywords

Navigation