Skip to main content

Advertisement

Log in

Biofloc technology combined with microalgae for improved nitrogen removal at lower C/N ratios using artificial aquaculture wastewater

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Biofloc technology (BFT) has gained increased interest as a potential low-cost and environmentally friendly method for sustainable aquaculture development. However, the addition of external organic carbon source and the increased aeration needed to promote biofloc formation could be a limitation of this technology. The integration of microalgae on the BFT has the potential to improve the overall efficiency of the method, since microalgae can photosynthetically assimilate nitrogen (ammonia, nitrate, and nitrite) without the requirement of external organic carbon addition. In this work, BFT was supplemented with microalgae Nannochloris sp. isolated and adapted in BFT, while four different C/N ratios (0:1, 5:1, 10:1, and 15:1) were applied in artificial aquaculture wastewater to investigate the nitrogen removal efficiency under reduced external organic carbon addition and to assess the nutritional value of the produced biomass. The present study demonstrated that microalgal integration into a biofloc system led to an efficient ammonia removal and repression of nitrite formation at a lower C/N ratio of 5:1 compared to optimum 15:1 of the series consisting of biofloc only. At the optimum levels of C/N, protein content was not changed (around 37%); however, the incorporation of microalgae into the biofloc resulted in a significant decrease of protein digestibility. Lipid content was also decreased (from approx. 16 to 11%) in the series with incorporated microalgae with less unsaturated fatty acids composition. Microbial diversity was altered in the different series examined, while bacterial and eukaryotic communities participating in the nitrogen cycle and degradation of complex organic compounds were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable

References

  • Abakari G, Luo G, Kombat EO (2021) Dynamics of nitrogenous compounds and their control in biofloc technology (BFT) systems: a review. Aquac Fish 6(5):441–447. https://doi.org/10.1016/j.aaf.2020.05.005

    Article  Google Scholar 

  • Ahmed N, Turchini GM (2021) Recirculating aquaculture systems (RAS): Environmental solution and climate change adaptation. J Clean Prod 297:126604

    Google Scholar 

  • Almeida CC, Monteiro MLG, da Costa-Lima BRC, Alvares TS, Conte-Junior CA (2015) In vitro digestibility of commercial whey protein supplements. LWT - Food Sci Technol 61(1):7–11

    CAS  Google Scholar 

  • Angela D, Arbi S, Natrah FM, Widanarni W, Pande GSJ, Ekasari J (2021) Evaluation of Chlorella sp. and Ankistrodesmus sp. addition on biofloc system performance in giant prawn culture. Aquac Res 52(12):6052–6062

    CAS  Google Scholar 

  • Ansari FA, Guldhe A, Gupta SK, Rawat I, Bux F (2021) Improving the feasibility of aquaculture feed by using microalgae. Environ Sci Polut Res 28(32):43234–43257

    CAS  Google Scholar 

  • APHA (1995) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC

    Google Scholar 

  • Arakkal Thaiparambil N, Radhakrishnan V (2022) Challenges in achieving an economically sustainable aquaponic system: a review. Aquac Int 30(6):3035–3066. https://doi.org/10.1007/s10499-022-00946-z

    Article  Google Scholar 

  • Asker D, Beppu T, Ueda K (2008) Nubsella zeaxanthinifaciens gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family Sphingobacteriaceae isolated from freshwater. Int J Syst Evol Microbiol 58(3):601–606

    CAS  PubMed  Google Scholar 

  • Ayyasamy PM, Shanthi K, Lakshmanaperumalsamy P, Lee S-J, Choi N-C, Kim D-J (2007) Two-stage removal of nitrate from groundwater using biological and chemical treatments. J Biosci Bioeng 104(2):129–134

    CAS  PubMed  Google Scholar 

  • Bakar NSA, Nasir NM, Lananan F, Hamid SHA, Lam SS, Jusoh A (2015) Optimization of C/N ratios for nutrient removal in aquaculture system culturing African catfish,(Clarias gariepinus) utilizing Bioflocs Technology. Int Biodeterior Biodegrad 102:100–106

    Google Scholar 

  • Bakhshi F, Najdegerami EH, Manaffar R, Tukmechi A, Farah KR (2018) Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio L.) fingerlings. Aquaculture 484:259–267

    CAS  Google Scholar 

  • Bellini MI, Gutiérrez L, Tarlera S, Scavino AF (2013) Isolation and functional analysis of denitrifiers in an aquifer with high potential for denitrification. Syst Appl Microbiol 36(7):505–516

    CAS  PubMed  Google Scholar 

  • Bossier P, Ekasari J (2017) Biofloc technology application in aquaculture to support sustainable development goals. Microb Biotechnol 10(5):1012–1016

    PubMed  PubMed Central  Google Scholar 

  • Brito LO, dos Santos IGS, de Abreu JL, de Araujo MT, Severi W, Galvez AO (2016) Effect of the addition of diatoms (Navicula spp.) and rotifers (Brachionus plicatilis) on water quality and growth of the Litopenaeus vannamei postlarvae reared in a biofloc system. Aquac Res 47(12):3990–3997

    CAS  Google Scholar 

  • Buchan A, LeCleir GR, Gulvik CA, González JM (2014) Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol 12(10):686–698

    CAS  PubMed  Google Scholar 

  • Camargo JA, Alonso A, Salamanca A (2005) Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere 58(9):1255–1267. https://doi.org/10.1016/j.chemosphere.2004.10.044

    Article  CAS  PubMed  Google Scholar 

  • Chee-Sanford J, Tian D, Sanford R (2019) Consumption of N2O and other N-cycle intermediates by Gemmatimonas aurantiaca strain T-27. Microbiology 165(12):1345–1354

    CAS  PubMed  Google Scholar 

  • Cheng H-Y, Xu A-A, Awasthi MK, Kong D-D, Chen J-S, Wang Y-F, Xu P (2020) Aerobic denitrification performance and nitrate removal pathway analysis of a novel fungus Fusarium solani RADF-77. Bioresour Technol 295:122250

    CAS  PubMed  Google Scholar 

  • Debbarma R, Meena DK, Biswas P, Meitei MM, Singh SK (2022) Portioning of microbial waste into fish nutrition via frugal biofloc production: a sustainable paradigm for greening of environment. J Clean Prod 334:130246. https://doi.org/10.1016/j.jclepro.2021.130246

    Article  CAS  Google Scholar 

  • Díaz-Torres O, De Anda J, Lugo-Melchor OY, Pacheco A, Orozco-Nunnelly DA, Shear H, Senés-Guerrero C, Gradilla-Hernández MS (2021) Rapid changes in the phytoplankton community of a subtropical, shallow, hypereutrophic lake during the rainy season. Front Microbiol 12:415

    Google Scholar 

  • Dimopoulos G, Stefanou N, Andreou V, Taoukis P (2018) Effect of pulsed electric fields on the production of yeast extract by autolysis. Innov Food Sci Emerg Technol 48:287–295. https://doi.org/10.1016/j.ifset.2018.07.005

    Article  CAS  Google Scholar 

  • Dong S, Li Y, Huang F, Lin L, Li Z, Li J, Zhang Y, Zheng Y (2022) Enhancing effect of Platymonas addition on water quality, microbial community diversity and shrimp performance in biofloc-based tanks for Penaeus vannamei nursery. Aquaculture 554:738057

    CAS  Google Scholar 

  • Dong S, Li Y, Jiang F, Hu Z, Zheng Y (2021) Performance of Platymonas and microbial community analysis under different C/N ratio in biofloc technology aquaculture system. J Water Process Eng 43:102257

    Google Scholar 

  • Donzella S, Serra I, Fumagalli A, Pellegrino L, Mosconi G, Lo Scalzo R, Compagno C (2022) Recycling industrial food wastes for lipid production by oleaginous yeasts Rhodosporidiobolus azoricus and Cutaneotrichosporon oleaginosum. Biotechnol Biofuels Bioprod 15(1):1–13

    Google Scholar 

  • Ebeling JM, Timmons MB, Bisogni JJ (2006) Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture 257(1):346–358. https://doi.org/10.1016/j.aquaculture.2006.03.019

    Article  Google Scholar 

  • Eberhardt TL, Min S-H (2008) Biosorbents prepared from wood particles treated with anionic polymer and iron salt: effect of particle size on phosphate adsorption. Bioresour Technol 99(3):626–630. https://doi.org/10.1016/j.biortech.2006.12.037

    Article  CAS  PubMed  Google Scholar 

  • Ekasari J, Nugroho UA, Fatimah N, Angela D, Hastuti YP, Pande GSJ, Natrah F (2021) Improvement of biofloc quality and growth of Macrobrachium rosenbergii in biofloc systems by Chlorella addition. Aquac Int 29(5):2305–2317

    CAS  Google Scholar 

  • FAO (2022) The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation, FAO Rome

    Google Scholar 

  • Felix S, Menaga M (2021) Applied aquaculture biofloc technology, 1st edn. CRC Press. https://doi.org/10.1201/9781003242611

    Book  Google Scholar 

  • Fimbres-Acedo YE, Magallón-Servín P, Garza-Torres R, Emerenciano MG, Servín-Villegas R, Endo M, Fitzsimmons KM, Magallón-Barajas FJ (2020) Oreochromis niloticus aquaculture with biofloc technology, photoautotrophic conditions and Chlorella microalgae. Aquac Res 51(8):3323–3346

    CAS  Google Scholar 

  • Flegontova O, Flegontov P, Malviya S, Poulain J, de Vargas C, Bowler C, Lukeš J, Horák A (2018) Neobodonids are dominant kinetoplastids in the global ocean. Environ Microbiol 20(2):878–889

    CAS  PubMed  Google Scholar 

  • Flores-Salgado G, Thalasso F, Buitrón G, Vital-Jácome M, Quijano G (2021) Kinetic characterization of microalgal-bacterial systems: contributions of microalgae and heterotrophic bacteria to the oxygen balance in wastewater treatment. Biochem Eng J 165:107819

    CAS  Google Scholar 

  • Frings CS, Fendley TW, Dunn RT, Queen CA (1972) Improved Determination of Total Serum Lipids by the Sulfo-Phospho-Vanillin Reaction. Clin Chem 18:673–674

    CAS  PubMed  Google Scholar 

  • Holanda M, Besold C, Sempere FL, Abreu PC, Poersch L (2022) Treatment of effluents from marine shrimp culture with biofloc technology: production of Arthrospira (Spirulina) platensis (cyanobacteria) and nutrient removal. J World Aquacult Soc 53(3):669–680

    CAS  Google Scholar 

  • Kavitha S, Selvakumar R, Sathishkumar M, Swaminathan K, Lakshmanaperumalsamy P, Singh A, Jain S (2009) Nitrate removal using Brevundimonas diminuta MTCC 8486 from ground water. Water Sci Technol 60(2):517–524

    CAS  PubMed  Google Scholar 

  • Khanjani MH, Sharifinia M (2020) Biofloc technology as a promising tool to improve aquaculture production. Rev Aquac 12(3):1836–1850

    Google Scholar 

  • Khoo KS, Chia WY, Chew KW, Show PL (2021) Microalgal-bacterial consortia as future prospect in wastewater bioremediation, environmental management and bioenergy production. Indian J Microbiol 61(3):262–269. https://doi.org/10.1007/s12088-021-00924-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochert G (1978) Carbohydrate determination by phenol-sulfuric acid method. In: Hellebust JA, Craige JS (eds) Handbook of phycological methods. Physiological and biochemical methods. Cambridge University Press, London, pp 95–97

    Google Scholar 

  • Lananan F, Hamid SHA, Din WNS, Khatoon H, Jusoh A, Endut A (2014) Symbiotic bioremediation of aquaculture wastewater in reducing ammonia and phosphorus utilizing Effective Microorganism (EM-1) and microalgae (Chlorella sp.). Int Biodeterior Biodegrad 95:127–134

    CAS  Google Scholar 

  • Larkin JM, WilliamsS PM, Taylor R (1977) Taxonomy of the genus Microcyclus Ørskov 1928: reintroduction and emendation of the genus Spirosoma Migula 1894 and proposal of a new genus, Flectobacillus. Int J Syst Evol Microbiol 27(2):147–156

    Google Scholar 

  • Lightner DV (1985) A review of the diseases of cultured penaeid shrimps and prawns with emphasis on recent discoveries and developments. In: Proceedings of the First International Conference on the Culture of Penaeid Prawns/Shrimps, 4-7 1984. Aquaculture Department, Southeast Asian Fisheries Development Center, Iloilo City, Philippines, pp 79–103

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Luque-Almagro VM, Gates AJ, Moreno-Vivián C, Ferguson SJ, Richardson DJ, Roldán MD (2011) Bacterial nitrate assimilation: gene distribution and regulation. Biochem Soc Trans 39(6):1838–1843

    CAS  PubMed  Google Scholar 

  • Marinho YF, Brito LO, CVFd SC, Severi W, Andrade HA, Galvez AO (2017) Effect of the addition of Chaetoceros calcitrans, Navicula sp. and Phaeodactylum tricornutum (diatoms) on phytoplankton composition and growth of Litopenaeus vannamei (Boone) postlarvae reared in a biofloc system. Aquac Res 48(8):4155–4164

    CAS  Google Scholar 

  • Markou G, Vandamme D, Muylaert K (2014) Microalgal and cyanobacterial cultivation: the supply of nutrients. Water Res 65:186–202. https://doi.org/10.1016/j.watres.2014.07.025

    Article  CAS  PubMed  Google Scholar 

  • Masojídek J, Vonshak A, Torzillo G (2010) Chlorophyll fluorescence applications in microalgal mass cultures. In: Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, pp 277–292

    Google Scholar 

  • Matsakas L, Giannakou M, Vörös D (2017) Effect of synthetic and natural media on lipid production from Fusarium oxysporum. Electron J Biotechnol 30:95–102

    CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51(345):659–668

    CAS  PubMed  Google Scholar 

  • McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4):e61217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  • Minaz M, Kubilay A (2021) Operating parameters affecting biofloc technology: carbon source, carbon/nitrogen ratio, feeding regime, stocking density, salinity, aeration, and microbial community manipulation. Aquac Int 29(3):1121–1140. https://doi.org/10.1007/s10499-021-00681-x

    Article  CAS  Google Scholar 

  • Na H, Jo S-W, Do J-M, Kim I-S, Yoon H-S (2020) Production of algal biomass production and high-value compounds mediated by the interaction of microalgal Oocystis sp. KNUA044 and bacterium Sphingomonas KNU100. J Microbiol Biotechnol

  • Niccolai A, Chini Zittelli G, Rodolfi L, Biondi N, Tredici MR (2019) Microalgae of interest as food source: biochemical composition and digestibility. Algal Res 42:101617. https://doi.org/10.1016/j.algal.2019.101617

    Article  Google Scholar 

  • Okazaki K, Tsurumaru H, Hashimoto M, Takahashi H, Okubo T, Ohwada T, Minamisawa K, Ikeda S (2021) Community analysis-based screening of plant growth-promoting bacteria for sugar beet. Microbes Environ 36(2):ME20137

    PubMed  PubMed Central  Google Scholar 

  • Pacheco-Vega JM, Cadena-Roa MA, Leyva-Flores JA, Zavala-Leal OI, Pérez-Bravo E, Ruiz-Velazco JM (2018) Effect of isolated bacteria and microalgae on the biofloc characteristics in the Pacific white shrimp culture. Aquac Rep 11:24–30

    Google Scholar 

  • Pang N, Gu X, Chen S, Kirchhoff H, Lei H, Roje S (2019) Exploiting mixotrophy for improving productivities of biomass and co-products of microalgae. Renew Sust Energ Rev 112:450–460. https://doi.org/10.1016/j.rser.2019.06.001

    Article  CAS  Google Scholar 

  • Panigrahi A, Sundaram M, Chakrapani S, Rajasekar S, Syama Dayal J, Chavali G (2019) Effect of carbon and nitrogen ratio (C: N) manipulation on the production performance and immunity of Pacific white shrimp Litopenaeus vannamei (Boone, 1931) in a biofloc-based rearing system. Aquac Res 50(1):29–41

    CAS  Google Scholar 

  • Park S-J, Choi Y-E, Kim EJ, Park W-K, Kim CW, Yang J-W (2012) Serial optimization of biomass production using microalga Nannochloris oculata and corresponding lipid biosynthesis. Bioprocess Biosyst Eng 35(1):3–9

    CAS  PubMed  Google Scholar 

  • Perez-Garcia O, Bashan Y (2015) Microalgal Heterotrophic and mixotrophic culturing for bio-refining: from metabolic routes to techno-economics. In: Prokop A, Bajpai RK, Zappi ME (eds) Algal Biorefineries: Volume 2: Products and Refinery Design. Springer International Publishing, Cham, pp 61-131. https://doi.org/10.1007/978-3-319-20200-6_3

  • Powell N, Shilton A, Chisti Y, Pratt S (2009) Towards a luxury uptake process via microalgae - defining the polyphosphate dynamics. Water Res 43(17):4207–4213. https://doi.org/10.1016/j.watres.2009.06.011

    Article  CAS  PubMed  Google Scholar 

  • Rasheed R, Thaher M, Younes N, Bounnit T, Schipper K, Nasrallah GK, Al Jabri H, Gifuni I, Goncalves O, Pruvost J (2022) Solar cultivation of microalgae in a desert environment for the development of techno-functional feed ingredients for aquaculture in Qatar. Sci Total Environ 835:155538

    CAS  PubMed  Google Scholar 

  • Rayaprolu S, Hettiarachchy N, Horax R, Satchithanandam E, Chen P, Mauromoustakos A (2015) Amino acid profiles of 44 soybean lines and ACE-I inhibitory activities of peptide fractions from selected lines. J Am Oil Chem Soc 92(7):1023–1033

    CAS  Google Scholar 

  • Robarge WP, Edwards A, Johnson B (1983) Water and waste water analysis for nitrate via nitration of salicylic acid. Commun Soil Sci Plant Anal 14(12):1207–1215. https://doi.org/10.1080/00103628309367444

    Article  CAS  Google Scholar 

  • Siverio JM (2002) Assimilation of nitrate by yeasts. FEMS Microbiol Rev 26(3):277–284. https://doi.org/10.1111/j.1574-6976.2002.tb00615.x

    Article  CAS  PubMed  Google Scholar 

  • Stavrakidis-Zachou O, Ernst A, Steinbach C, Wagner K, Waller U (2019) Development of denitrification in semi-automated moving bed biofilm reactors operated in a marine recirculating aquaculture system. Aquac Int 27(5):1485–1501. https://doi.org/10.1007/s10499-019-00402-5

    Article  CAS  Google Scholar 

  • Takeda M, Yoneya A, Miyazaki Y, Kondo K, Makita H, Kondoh M, Suzuki I, J-i K (2008) Prosthecobacter fluviatilis sp. nov., which lacks the bacterial tubulin btubA and btubB genes. Int J Syst Evol Microbiol 58(7):1561–1565

    CAS  PubMed  Google Scholar 

  • Viegas C, Gouveia L, Gonçalves M (2021) Aquaculture wastewater treatment through microalgal. Biomass potential applications on animal feed, agriculture, and energy. J Environ Manage 286:112187

    CAS  PubMed  Google Scholar 

  • Wei G, Shan D, Li G, Li X, Tian R, He J, Shao Z (2020) Prokaryotic communities vary with floc size in a biofloc-technology based aquaculture system. Aquaculture 529:735632

    CAS  Google Scholar 

  • Wild KJ, Steingaß H, Rodehutscord M (2018) Variability in nutrient composition and in vitro crude protein digestibility of 16 microalgae products. J Anim Physiol Anim Nutr 102(5):1306–1319

    CAS  Google Scholar 

  • Xi L, Lu Q, Liu Y, Su J, Chen W, Gong Y, Han D, Yang Y, Zhang Z, Jin J (2022) Effects of fish meal replacement with Chlorella meal on growth performance, pigmentation, and liver health of largemouth bass (Micropterus salmoides). Anim Nutr 10:26–40

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the Eranet BlueBio project AquaTech4Feed (General Secretariat for Research and Innovation GSRI, Greece, MIS 5070470 / Τ11ΕΡΑ4-00038).

Author information

Authors and Affiliations

Authors

Contributions

GM and CE wrote the main manuscript. All authors revised it critically and approved the final version of the manuscript.

Corresponding author

Correspondence to Giorgos Markou.

Ethics declarations

Ethical approval

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Handling Editor: Mauricio G. C. Emerenciano

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 40 kb)

ESM 2

(DOCX 28 kb)

ESM 3

(DOCX 1840 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markou, G., Economou, C.N., Petrou, C. et al. Biofloc technology combined with microalgae for improved nitrogen removal at lower C/N ratios using artificial aquaculture wastewater. Aquacult Int 32, 1537–1557 (2024). https://doi.org/10.1007/s10499-023-01228-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-023-01228-y

Keywords

Navigation