Skip to main content
Log in

Microalgae for feeding of penaeid shrimp larvae: an overview

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

One of the most limiting factors regarding the production of shrimp juveniles is the feeding and nutrition of the larvae. Overall, in commercial larviculture of penaeid shrimp, feeding starts with live microalgae, and the supplementation of brine shrimp begins generally on the mysis stage. However, the search for practicality, cost reduction, and reduced vectorization of pathogens has led to the development of new types of diets that associate live and inert food. Even so, the use of microalgae remains essential for the shrimp’s larvae immune response, pigmentation, and zootechnical performance, in addition to maintaining water quality and bacterial control of the system. Therefore, numerous researches have been carried out to evaluate the productive performance of larvae and post-larvae of penaeid shrimp fed with processed microalgae in complementation to live microalgae. Thus, this review aims to present an overview of research related to feeding penaeid shrimp larvae with live and processed microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The authors certify that all data support the published claims and comply with field standards.

Code availability

Not applicable.

References

  • Abiusi F, Sampietro G, Marturano G, Biondi N, Rodolfi L, D’Ottavio M, Tredici MR (2013) Growth, photosynthetic efficiency, and biochemical composition of Tetraselmis suecica F&M-M33 grown with LEDs of different colors. Biotechnol Bioeng 111(5):956–964. https://doi.org/10.1002/bit.25014

    Article  CAS  PubMed  Google Scholar 

  • Abreu AP, Fernandes B, Vicente AA, Teixeira J, Dragone G (2012) Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour Technol 118:61–66. https://doi.org/10.1016/j.biortech.2012.05.055

    Article  CAS  PubMed  Google Scholar 

  • Arredondo-Vega BO, Leal-Lorenzo S, López-Ruiz J (2004) Effect of zeolitic products in the nutritive quality of the diatom Thalassiosira weissflogii. Hidrobiológica 14(1):69–74

    Google Scholar 

  • Banerjee S, Hew WE, Khatoon H, Shariff M, Yusoff FM (2011) Growth and proximate composition of tropical marine Chaetoceros calcitrans and Nannochloropsis oculata cultured outdoors and under laboratory conditions. Afr J Biotechnol 10(8):1375–1383. https://doi.org/10.5897/AJB10.1748

    Article  CAS  Google Scholar 

  • Beach ES, Eckelman MJ, Cui Z, Brentner L, Zimmerman JB (2012) Preferential technological and life cycle environmental performance of chitosan flocculation for harvesting of the green algae Neochloris oleoabundans. Bioresour Technol 121:445–449. https://doi.org/10.1016/j.biortech.2012.06.012

    Article  CAS  PubMed  Google Scholar 

  • Becker W (2004) Microalgae in human and animal nutrition. In Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology, vol 312. Wiley Online Library, London, pp 312–351. https://doi.org/10.1002/9780470995280.

  • Benavides AMS, Torzillo G, Kopecký J, Masojídek J (2013) Productivity and biochemical composition of Phaeodactylum tricornutum (Bacillariophyceae) cultures grown outdoors in tubular photobioreactors and open ponds. Biomass Bioenergy 54:115–122. https://doi.org/10.1016/j.biombioe.2013.03.016

    Article  CAS  Google Scholar 

  • Biendenbach JM, Smith LL, Lawrence AL (1990) Use of a new spray dried algal product in penaeid larval culture. Aquaculture 86:249–257

    Article  Google Scholar 

  • Boeing P (1997) Partial replacement of live algae in the laviculture of Litopenaeus vannamei with microencapsulate and spray-dried algae Schizochytrium sp. Technical Paper and Trials, Aquafauna, Biomarine. http://www.aquafauna.com/pt. Accessed 20 July 2020

  • Borowitzka MA (1992) Algal biotechnology products and processes—matching science and economics. J Appl Phycol 4(3):267–279. https://doi.org/10.1007/BF02161212

    Article  Google Scholar 

  • Brown MR, Jeffrey SW, Volkman JK, Dunstan GA (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151(1–4):315–331

    Article  CAS  Google Scholar 

  • Buono S, Colucci A, Angelini A, Langellotti AL, Massa M, Martello A, ... Dibenedetto A (2016) Productivity and biochemical composition of Tetradesmus obliquus and Phaeodactylum tricornutum: effects of different cultivation approaches. J Appl Phycol 28(6): 3179-3192. https://doi.org/10.1007/s10811-016-0876-6

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81. https://doi.org/10.1016/j.biortech.2010.06.159

    Article  CAS  PubMed  Google Scholar 

  • Couto C, Hernández CP, Alves Sobrinho RCM, Mendes CRB, Roselet F, Abreu PC (2021) Optimization of a low-cost fertilizer-based medium for large-scale cultivation of the coastal diatom Conticribra weissflogii using response surface methodology and its effects on biomass composition. J Appl Phycol 33(5):2767–2781. https://doi.org/10.1007/s10811-021-02519-8

    Article  CAS  Google Scholar 

  • Coutteau P, Sorgeloos P (1992) The use of algal substitutes and the requirement for live algae in the hatchery and nursery rearing of bivalve molluscs: an international survey. J Shellfish Res 11:467–467

    Google Scholar 

  • Crisp JA, D’Souza FM, Tweedley JR, Partridge GJ, Moheimani NR (2017) Performance of mixed species and mono-specific algal diets for culture of larval Western School Prawns, Metapenaeus Dalli. J World Aquac Soc 49(5):845–856. https://doi.org/10.1111/jwas.12484

    Article  Google Scholar 

  • Da Silva JWA, dos Santos MJB, Bezerra JHC, Damasceno VL, Araujo GS, dos Santos ES, Lopes DNM (2020) Influence of microalgae Chlorella vulgaris on zoothenic performance of marine shrimp Litopenaeus vannamei. Braz J Dev 6(2):5603–5614. https://doi.org/10.34117/bjdv6n2-019

    Article  Google Scholar 

  • De la Peña MR, Villegas CT (2005) Cell growth, effect of filtrate and nutritive value of the tropical Prasinophyte Tetraselmis tetrathele (Butcher) at different phases of culture. Aquac Res 36(15):1500–1508. https://doi.org/10.1111/j.1365-2109.2005.01371.x

    Article  Google Scholar 

  • De Oliveira CA, de Oliveira Campos AA, Ribeiro SMR, de Castro Oliveira W, do Nascimento AG (2013) Nutritional, functional and therapeutic potential of cyanobacteria Spirulina. R Assoc Bras Nutr 5(1):52–59. https://doi.org/10.2174/138920105774370607

    Article  CAS  Google Scholar 

  • Divya M, Aanand S (2020) Microalgae-A boon for larviculture of aquatic organisms. Int J Appl Res 6(5):138–143

    Google Scholar 

  • D’Souza FML, Knuckey RM, Hohmann S, Pendrey RC (2002) Flocculated microalgae concentrates as diets for larvae of the tiger prawn Penaeus monodon Fabricius. Aquac Nutr 8:113–120. https://doi.org/10.1046/j.1365-2095.2002.00198.x

    Article  Google Scholar 

  • D’Souza FML, Lecossois D, Heasman MP, Diemar JA, Jackson CJ, Pendrey RC (2000) Evaluation of centrifuged microalgae concentrates as diets for Penaeus monodon Fabricius larvae. Aquac Res 31(8–9):661–670. https://doi.org/10.1046/j.1365-2109.2000.318486.x

    Article  Google Scholar 

  • D'Souza FML, Loneragan NR (1999) Effects of monospecific and mixed-algae diets on survival, development and fatty acid composition of penaeid prawn (Penaeus spp.) larvae. Mar Biol 133(4): 621–633. https://doi.org/10.1007/s002270050502

  • D’souza FML, Kelly GJ (2000) Effects of a diet of a nitrogen-limited alga (Tetraselmis suecica) on growth, survival and biochemical composition of tiger prawn (Penaeus semisulcatus) larvae. Aquaculture 187:311–329. https://doi.org/10.1016/S0044-8486(99)00231-8

    Article  Google Scholar 

  • Durvasula R, Hurwitz I, Fieck A, Rao DS (2015) Culture, growth, pigments and lipid content of Scenedesmus species, an extremophile microalga from Soda Dam, New Mexico in wastewater. Algal Res 10:128–133. https://doi.org/10.1016/j.algal.2015.04.003

    Article  Google Scholar 

  • FAO (2020) The State of World Fisheries and Aquaculture 2020. Sustainability in action, Rome. https://doi.org/10.4060/ca9229en

    Book  Google Scholar 

  • Gaxiola G, Gallardo P, Simôes N, Cuzon G (2010) A red shrimp, Farfantepenaeus brasiliensis (Latreille, 1817), larvae feeding regime based on live food. J World Aquac Soc 41(3):402–410. https://doi.org/10.1111/j.1749-7345.2010.00381.x

    Article  Google Scholar 

  • Ghadikolaei KR, Abdolalian E, Hojatollah F, Masoud G, Ng WK (2013) The nutritional effect of Isochrysis galbana and Chaetoceros muelleri cultured with different seaweed extracts on the larval development, growth and survival of the marine shrimp, Penaeus Indicus. Aquac Res 46(6):1444–1454. https://doi.org/10.1111/are.12331

    Article  Google Scholar 

  • Ghaeni M, Matinfar A, Soltani M, Rabbani M, Vosoughi A (2011) Comparative effects of pure spirulina powder and other diets on larval growth and survival of green tiger shrimp, Peneaus semisulcatus. Iran J Fish Sci 10(2): 208–217. http://aquaticcommons.org/id/eprint/22415. Accessed 12 May 2020

  • Gopakumar G, Ignatius B (2006) A critique towards the development of a Marine Ornamental Industry in India. http://eprints.cmfri.org.in/id/eprint/7793. Accessed 13 June 2020

  • Gorgônio CMS, Aranda DAG, Couri S (2013) Morphological and chemical aspects of Chlorella pyrenoidosa, Dunaliella tertiolecta, Isochrysis galbana and Tetraselmis gracilis microalgae. Nat Sci 5(7):783–791. https://doi.org/10.4236/ns.2013.57094

    Article  CAS  Google Scholar 

  • Grima EM, Belarbi EH, Fernández FA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7–8):491–515. https://doi.org/10.1016/S0734-9750(02)00050-2

    Article  Google Scholar 

  • Iba WA, Rice MA, Wikfors GH (2014) Microalgae in eastern pacific white shrimp, Litopenaeus vannamei (Boone 1931) hatcheries: a review on roles and culture environments. Asian Fish Sci 27(3):212–233

    Google Scholar 

  • Jaime B, Artiles M, Fraga I, Galindo J (2000) Sustitución de Chaetoceros muelleri por Chlorella vulgaris secada por “spray” en la alimentación de protozoeas de Litopenaeus schmitti. Bol Centro Invest Biol 34(2):127–142

    Google Scholar 

  • Jaime-Ceballos B, Villarreal-Colmenares H, García-Galano T, Civera-Cerecedo R, Gaxiola-Cortes G (2004) Empleo del polvo de Spirulina platensis en la alimentación de zoeas y mysis de Litopenaeus schmitti (Perez-Farfante y Kensley, 1997). In: Avances en Nutrición Acuícola. Memorias del VII Simposium Internacional de Nutrición Acuícola. Hermosillo: Sonora, pp 16–19.

  • Jamali H, Imani A, Abdollahi D, Roozbehfar R, Isari A (2015) Use of probiotic Bacillus spp. in rotifer (Brachionus plicatilis) and Artemia (Artemia urmiana) enrichment: effects on growth and survival of Pacific white shrimp, Litopenaeus vannamei, Larvae. Probiotics Antimicrob Proteins 7(2): 118–125. https://doi.org/10.1007/s12602-015-9189-3

  • Ju ZY, Deng DF, Dominy W (2012) A defatted microalgae (Haematococcus pluvialis) meal as a protein ingredient to partially replace fishmeal in diets of Pacific white shrimp (Litopenaeus vannamei, Boone, 1931). Aquaculture 354:50–55. https://doi.org/10.1016/j.aquaculture.2012.04.028

    Article  CAS  Google Scholar 

  • Karthik R, Thamizharasan K, Sankari D, Kadiravan R, Ashwitha A (2016) Biochemical profile of shrimp larvae fed with five different micro algae and enriched Artemia salina under laboratory conditions. Int J Fish Aquatic Stud 4(4):376–379

    Google Scholar 

  • Khatoon H, Haris H, Rahman NA, Zakaria MN, Begum H, Mian S (2018) Growth, proximate composition and pigment production of Tetraselmis chuii cultured with aquaculture wastewater. J Ocean Univ China 17(3):641–646. https://doi.org/10.1007/s11802-018-3428-7

    Article  CAS  Google Scholar 

  • Khojasteh Z, Davoodi R, Vaghei RG, Nooryazdan H (2013) Survival, development and growth of whiteleg shrimp, Litopenaeus vannamei zoea fed with monoalgae (Chaetoceros and Tetraselmis) diets. World J Fish Mar Sci 5(5):553–555. https://doi.org/10.5829/idosi.wjfms.2013.05.05.74109

    Article  Google Scholar 

  • Kiataramgul A, Maneenin S, Purton S, Areechon N, Hirono I, Wannathong T, Unajak S (2020) An oral delivery system for controlling white spot syndrome virus infection in shrimp using transgenic microalgae. Aquaculture 521(735022):1–8. https://doi.org/10.1016/j.aquaculture.2020.735022

    Article  CAS  Google Scholar 

  • Kiatmetha P, Siangdang W, Bunnag B, Senapin S, Withyachumnarnkul B (2011) Enhancement of survival and metamorphosis rates of Penaeus monodon larvae by feeding with the diatom Thalassiosira weissflogii. Aquac Int 19(4):599–609. https://doi.org/10.1007/s10499-010-9375-y

    Article  CAS  Google Scholar 

  • Kuban FD, Lawrence AL, Wilkenfeld JS (1985) Survival, metamorphosis and growth of larvae from four penaeid species fed six food combinations. Aquaculture 47(2–3):151–162. https://doi.org/10.1016/0044-8486(85)90061-4

    Article  Google Scholar 

  • Kumlu M (1998) Larval growth and survival of Penaeus indicus (Decapoda: Penaeidae) on live feeds. Turk J Biol 22(2):233–246

    Google Scholar 

  • Kumlu M, Jones DA (1995) The effect of live and artificial diets on growth, survival, and trypsin activity in larvae of Penaeus indicus. J World Aquac Soc 26(4):406–415. https://doi.org/10.1111/j.1749-7345.1995.tb00836.x

    Article  Google Scholar 

  • Laing I, Millican PF (1992) Indoor nursery cultivation of juvenile bivalve molluscs using diets of dried algae. Aquaculture 102(3):231–243. https://doi.org/10.1016/0044-8486(92)90151-A

    Article  Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30(3):673–690. https://doi.org/10.1016/j.biotechadv.2011.11.008

    Article  CAS  PubMed  Google Scholar 

  • Macias-Sancho J, Poersch LH, Bauer W, Romano LA, Wasielesky W, Tesser MB (2014) Fishmeal substitution with Arthrospira (Spirulina platensis) in a practical diet for Litopenaeus vannamei: effects on growth and immunological parameters. Aquaculture 426:120–125. https://doi.org/10.1016/j.aquaculture.2014.01.028

  • Maia IB, Carneiro M, Magina T, Malcata FX, Otero A, Navalho J, ... Pereira H (2022) Diel biochemical and photosynthetic monitorization of Skeletonema costatum and Phaeodactylum tricornutum grown in outdoor pilot-scale flat panel photobioreactors. J Biotechnol 343: 110-119. https://doi.org/10.1016/j.jbiotec.2021.11.008

  • Mamat NZ, Alfaro AC (2014) Evaluation of microalgal and formulated diets for the culture of the New Zealand pipi clam Paphies australis. Int Aquat Res 6(1):1–11. https://doi.org/10.1007/s40071-014-0057-7

    Article  Google Scholar 

  • Martínez-Córdova LR, Campaña-Torres A, Martínez-Porchas M, López-Elías JA, García-Sifuentes CO (2012) Effect of alternative mediums on production and proximate composition of the microalgae Chaetoceros muelleri as food in culture of the copepod Acartia sp. Lat Am J Aquat Res 40(1):169–176. https://doi.org/10.3856/vol40-issue1-fulltext-16

    Article  Google Scholar 

  • Moreno-Garcia L, Adjallé K, Barnabé S, Raghavan GSV (2017) Microalgae biomass production for a biorefinery system: recent advances and the way towards sustainability. Renew Sustain Energy Rev 76:493–506. https://doi.org/10.1016/j.rser.2017.03.024

    Article  Google Scholar 

  • Munro J, Owens L (2007) Yellow head-like viruses affecting the penaeid aquaculture industry: a review. Aquac Res 38(9):893–908. https://doi.org/10.1111/j.1365-2109.2007.01735.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naranjo J, Porchas MA, Robles M, Magallón FJ, Valdez J, Villarreal H (1999) Sobrevivencia, metamorfosis y crecimiento de larvas del camarón Penaeus californiensis (Decapoda: Penaeidae) alimentadas con diferentes microalgas. Rev Biol Trop 47(4):917–922

    Google Scholar 

  • Nuñez M, Lodeiros C, de Donato M, Graziani C (2002) Evaluation of microalgae diets for Litopenaeus vannamei larvae using a simple protocol. Aquac Int 10(3):177–187. https://doi.org/10.1023/A:1022102032684

    Article  Google Scholar 

  • Okauchi M, Kawamura K, Mizukami Y (1997) Nutritive value of 'Tahiti Isochrysis' Isochrysis sp. for larval greasy back shrimp, Metapenaeus ensis. Bull Natl Res Inst Aquacult 1–12.

  • Okauchi M, Tokuda M (2003) Trophic value of the unicellular diatom Phaeodactylum tricornutum for larvae of Kuruma prawn, Penaeus japonicus. In: Symposium on aquaculture and pathobiology of crustaceans and other species in conjunctions with the 32nd UJNR Aquaculture panel meeting, 18p.

  • Olenina I, Hajdu S, Edler L, Andersson A, Wasmund N, Busch S, Göbel J, Gromisz S, Huseby S, Huttunen M, Jaanus A, Kokkonen P, Ledaine I, Niemkiewicz E (2006) Biovolumes and size-classes of phytoplankton in the Baltic Sea. Baltic Sea Environ Proc No. 106, 144pp.

  • Pereira MI, Chagas BM, Sassi R, Medeiros GF, Aguiar EM, Borba LH, ... Rangel AH (2019) Mixotrophic cultivation of Spirulina platensis in dairy wastewater: Effects on the production of biomass, biochemical composition and antioxidant capacity. PloS one 14(10): e0224294. https://doi.org/10.1371/journal.pone.0224294

  • Pérez EI, Cruz ACP (2007) Evaluación del crecimiento y supervivencia en larvas de camaron blanco Litopenaeus vannamei usando como fuente de alimento microalgas vivas y congeladas. Revista Electrónica de Veterinaria REDVET. http://dspace.uan.mx:8080/jspui/handle/123456789/33. Accessed 28 November 2020

  • Pérez L, Salgueiro JL, González J, Parralejo AI, Maceiras R, Cancela Á (2017) Scaled up from indoor to outdoor cultures of Chaetoceros gracilis and Skeletonema costatum microalgae for biomass and oil production. Biochem Eng J 127:180–187. https://doi.org/10.1016/j.bej.2017.08.016

    Article  CAS  Google Scholar 

  • Pérez-Morales A, Band-Schmidt CJ, Martínez-Díaz SF (2016) Changes in mortality rates during the larval stage of the Pacific white shrimp (Litopenaeus vannamei) on the basis of algal (Chaetoceros calcitrans or Tetraselmis suecica) food density. Ecosistemas y Recursos Agropecuarios 3(9):415–420

    Google Scholar 

  • Pimolrat P, Direkbusarakom S, Chinajariyawong C, Powtongsook S (2010) The effect of sodium bicarbonate concentrations on growth and biochemical composition of Chaetoceros gracilis Schutt. J Fish Environ 34(2):40–47

    Google Scholar 

  • Piña P, Nieves M, Ramos-Brito L, Chavira-Ortega CO, Voltolina D (2005) Survival, growth and feeding efficiency of Litopenaeus vannamei protozoea larvae fed different rations of the diatom Chaetoceros muelleri. Aquaculture 249(1–4):431–437. https://doi.org/10.1016/j.aquaculture.2005.04.037

    Article  Google Scholar 

  • Piña P, Voltolina D, Nieves M, Robles M (2006) Survival, development and growth of the Pacific white shrimp Litopenaeus vannamei protozoea larvae, fed with monoalgal and mixed diets. Aquaculture 253(1–4):523–530. https://doi.org/10.1016/j.aquaculture.2005.07.016

    Article  Google Scholar 

  • Portella MC, Leitão NJ, Takata R, Lopes T (2012) Feeding and nutrition of larvae. In: Fracalossi D, Cyrino J. (eds) Nutriaqua: nutrition and feeding species of interest to Brazilian aquaculture. Sociedade Brasileira de Aquicultura e Biologia Aquática, Florianópolis, pp 185–216.

  • Puello-Cruz AC, Sangha RS, Jones DA, Le Vay L (2002) Trypsin enzyme activity during larval development of Litopenaeus vannamei (Boone) fed on live feeds. Aquac Res 33(5):333–338. https://doi.org/10.1046/j.1365-2109.2002.00676.x

    Article  CAS  Google Scholar 

  • Radmann EM, Costa JAV (2008) Lipid content and fatty acid composition of microalgae exposed to gases CO2, SO2 e NO. Quim Nova 31(7):1609–1612. https://doi.org/10.1590/S0100-40422008000700002

    Article  CAS  Google Scholar 

  • Richmond A (2004) Biological principles of mass cultivation. In: Richmond A (ed) Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Science, Oxford, pp 125–177

    Google Scholar 

  • Rizwan M, Mujtaba G, Memon SA, Lee K, Rashid N (2018) Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renew Sustain Energy Rev 92:394–404. https://doi.org/10.1016/j.rser.2018.04.034

    Article  Google Scholar 

  • Robinson CB, Samocha TM, Fox JM, Gandy RL, McKee DA (2005) The use of inert artificial commercial food sources as replacements of traditional live food items in the culture of larval shrimp Farfantepenaeus aztecus. Aquaculture 245(1–4):135–147. https://doi.org/10.1016/j.aquaculture.2004.11.051

    Article  Google Scholar 

  • Rodríguez EO, López-Elías JA, Aguirre-Hinojosa E, Constantino-Franco F, Miranda-Baeza A, Nieves-Soto M (2012) Evaluation of the nutritional quality of Chaetoceros muelleri Schütt (Chaetocerotales: chaetocerotaceae) and Isochrysis sp. (Isochrysidales: isochrysidaceae) grown outdoors for the larval development of Litopenaeus vannamei (Boone, 1931) (Decapoda: Penaeidae). Arch Biol Sci 64(3):963–970. https://doi.org/10.2298/ABS1203963R

    Article  Google Scholar 

  • Rodriguez EO, Lopez-Elias JA, Aguirre-Hinojosa E, Garza-Aguirre MDC, Constantino-Franco F, Miranda-Baeza A, Nieves-Soto M (2012) Evaluation of the nutritional quality of Chaetoceros muelleri Schütt (Chaetocerotales: Chaetocerotaceae) and Isochrysis sp. (Isochrysidales: isochrysidaceae) grown outdoors for the larval development of Litopenaeus vannamei (Boone, 1931) (Decapoda: Penaeidae). Arch Biol Sci 64(3): 963-970. https://doi.org/10.2298/ABS1203963R

  • Ryu B, Kang KH, Ngo DH, Qian ZJ, Kim SK (2012) Statistical optimization of microalgae Pavlova lutheri cultivation conditions and its fermentation conditions by yeast, Candida rugopelliculosa. Bioresour Technol 107:307–313. https://doi.org/10.1016/j.biortech.2011.12.014

    Article  CAS  PubMed  Google Scholar 

  • Salas-Leiva J, Dupré E, Salas-Leiva D (2016) Proximate composition analysis posterior to the cryopreservation of Chaetoceros calcitrans. Rev MVZ Córdoba 21(1):5258–5264. https://doi.org/10.21897/rmvz.35

    Article  Google Scholar 

  • Sandeep KP, Avunje S, Dayal JS, Balasubramanian CP, Sawant PB, Chadha NK, ... Vijayan KK (2021) Efficiency of different microalgae as monospecific and bispecific diets in larval rearing of Penaeus indicus with special reference to growth, nutrient composition and antimicrobial activity of microalgae. Aquac Res 52(11), 5146–5154. https://doi.org/10.1111/are.15382

  • Scherer MD, Pereira MC, Mariano AB, Vargas JVC (2016) Evaluation of flocculation and environmental efficiency of biomass recovery from microalgae cultivated in compact industrial photobioreactors. Rev Gest Sust Ambient 5(1):92–118. https://doi.org/10.19177/rgsa.v5e1201692-118

    Article  Google Scholar 

  • Schulze PS, Pereira HG, Santos TF, Schueler L, Guerra R, Barreira LA, ..., Varela JC (2016) Effect of light quality supplied by light emitting diodes (LEDs) on growth and biochemical profiles of Nannochloropsis oculata and Tetraselmis chuii. Algal Res 16: 387-398. https://doi.org/10.1016/j.algal.2016.03.034

  • Shekarabi SPH, Mehrgan MS, Razi N, Sabzi S (2019) Biochemical composition and fatty acid profile of the marine microalga Isochrysis galbana dried with different methods. J Microbiol Biotechnol Food Sci 2021:521–524. https://doi.org/10.15414/jmbfs.2019/20.9.3.521-524

    Article  CAS  Google Scholar 

  • Spoehr HA, Milner HW (1949) The chemical composition of Chlorella: effect of environmental conditions. Plant Physiol 24:120–149. https://doi.org/10.1104/pp.24.1.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stentiford GD, Feist SW, Stone DM, Bateman KS, Dunn AM (2013) Microsporidia: diverse, dynamic, and emergent pathogens in aquatic systems. Trends Parasitol 29(11):567–578. https://doi.org/10.1016/j.pt.2013.08.005

    Article  PubMed  Google Scholar 

  • Tang Y, Wang R, Tan L, Guo L, Duan Y, Yang L, Huang J (2020) Effects of live microalgae and algae powder on microbial community, survival, metamorphosis and digestive enzyme activity of Penaeus monodon larvae at different growth stages. Aquaculture 735344. https://doi.org/10.1016/j.aquaculture.2020.735344

  • Tayag CM, Lin Y, Li C, Liou C, Chen J (2010) Administration of the hot-water extract of Spirulina platensis enhanced the immune response of white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus. Fish Shellfish Immunol 28:764–773. https://doi.org/10.1016/j.fsi.2010.01.023

    Article  PubMed  Google Scholar 

  • Tokuşoglu Ö, Üunal MK (2003) Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. J Food Sci 68(4):1144–1148. https://doi.org/10.1111/j.1365-2621.2003.tb09615.x

    Article  Google Scholar 

  • Tredici MR, Biondi N, Ponis E, Rodolfi L, Zittelli GC (2009) Advances in microalgal culture for aquaculture feed and other uses. In: Burnell G, Allan G (eds) New Technologies in Aquaculture: Improving Production Efficiency, Quality and Environmental Management. FL: Woodhead Publishing, Boca Raton, pp 610–676.

  • Uduman N, Qi Y, Danquah MK, Hoadley AF (2010) Marine microalgae flocculation and focused beam reflectance measurement. Chem Eng J 162(3):935–940. https://doi.org/10.1016/j.cej.2010.06.046

    Article  CAS  Google Scholar 

  • Valderrama D, Anderson JL (2012) Shrimp production review. Global aquaculture advocate magazine, 8–9.

  • Vásquez-Suárez A, Guevara M, González M, Cortez R, Arredondo-Vega B (2013) Growth and biochemical composition of Thalassiosira pseudonana (Thalassiosirales: Thalassiosiraceae) cultivated in semicontinuous system at different culture media and irradiances. Rev Biol Trop 61(3):1003–1013

    Article  Google Scholar 

  • Zarrinmehr MJ, Farhadian O, Heyrati FP, Keramat J, Koutra E, Kornaros M, Daneshvar E (2020) Effect of nitrogen concentration on the growth rate and biochemical composition of the microalga, Isochrysis Galbana. Egypt J Aquat Res 46(2):153–158. https://doi.org/10.1016/j.ejar.2019.11.003

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the aid granted to Alfredo Olivera Gálvez [PQ 308063/2019-8] and Ranilson de Souza Bezerra [PQ 307107/2019-1].

Author information

Authors and Affiliations

Authors

Contributions

Laenne Barbara S. de Moraes performed the literature search and data analysis and drafted, Rudã Fernandes B. Santos had the idea for the article and performed the literature search and data analysis, Genes F. Gonçalves Junior performed the layout and drafted, Géssica Cavalcanti P. Mota performed the literature search and drafted, Danielli Matias de M. Dantas critically revised the manuscript, Ranilson de Souza Bezerra critically revised the manuscript, and Alfredo Olivera Gálvez performed the literature and critically revised the manuscript.

Corresponding author

Correspondence to Laenne Barbara Silva de Moraes.

Ethics declarations

Ethics approval

This article does not contain any studies with animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Gavin Burnell

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Moraes, L.B.S., Santos, R.F.B., Gonçalves Junior, G.F. et al. Microalgae for feeding of penaeid shrimp larvae: an overview. Aquacult Int 30, 1295–1313 (2022). https://doi.org/10.1007/s10499-022-00857-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-022-00857-z

Keywords

Navigation