Skip to main content
Log in

Is aquaponics good for the environment?—evaluation of environmental impact through life cycle assessment studies on aquaponics systems

Aquaculture International Aims and scope Submit manuscript

Cite this article


Aquaponics is often presented as a sustainable food production system that can reduce environmental costs of global food production; yet, its actual environmental effects are understudied. The aim of this research was to review the limited number of life cycle assessment studies dealing with aquaponics, and to highlight environmental cost and benefit of this practice. Our assessment highlights some of the problems, challenges, and advantages of aquaponics as a valuable food production system. We propose guidelines for future life cycle assessments of aquaponics that will facilitate policy and decision-making for farmers with respect to aquaponics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1


  • Armanda DT, Guinée JB, Tukker A (2019) The second green revolution: innovative urban agriculture’s contribution to food security and sustainability – a review. Glob Food Sec 22:13–24.

    Article  Google Scholar 

  • Bhakar V, Kaur K, Singh H (2021) Analyzing the environmental burden of an aquaponics system using LCA. Procedia CIRP 98:223–228.

    Article  Google Scholar 

  • Boxman SE, Zhang Q, Bailey D, Trotz MA (2017) Life cycle assessment of a commercial-scale freshwater aquaponic system. Environ Eng Sci 34(5):299–311.

    Article  CAS  Google Scholar 

  • Brentrup F, Küsters J, Kuhlmann H, Lammel J (2004) Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. Theoretical concept of a LCA method tailored to crop production. Eur J Agron 20:247–264.

    Article  Google Scholar 

  • Cohen A, Malone S, Morris Z, Weissburg M, Bras B (2018) Combined fish and lettuce cultivation: an aquaponics life cycle assessment. Procedia CIRP 69:551–556.

    Article  Google Scholar 

  • dos Santos MJPL (2016) Smart cities and urban areas—aquaponics as innovative urban agriculture. Urban for Urban Green 20:402–406

    Article  Google Scholar 

  • Enduta A, Jusoh A, Ali N, Nik WBW (2012) Nutrient removal from aquaculture wastewater by vegetable production in aquaponics recirculation system. Desalin Water Treat 32(1–3):422–430

    Google Scholar 

  • Engle CR (2015) Economics of aquaponics, Southern Regional Aquaculture Center Publication no. 5006. Arkansas, USA

  • Finkbeiner M, Inaba A, Tan R, Christiansen K, Klüppel H-J (2006) The new international standards for life cycle assessment: ISO 14040 and ISO 14044. Int J Life Cycle Assess 11:80–85

    Article  Google Scholar 

  • Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manage 91:1–21.

    Article  PubMed  Google Scholar 

  • Forchino AA, Gennotte V, Maiolo S, Brigolin D, Mélard C, Pastres R (2018) Eco-designing Aquaponics: A case study of an experimental production system in Belgium. Procedia CIRP 69:546–550.

    Article  Google Scholar 

  • Forchino AA, Lourguioui H, Brigolin D, Pastres R (2017) Aquaponics and sustainability: the comparison of two different aquaponic techniques using the life cycle assessment (LCA). Aquac Eng 77:80–88.

    Article  Google Scholar 

  • Fruscella L, Kotzen B, Milliken S (2021) Organic aquaponics in the European Union: towards sustainable farming practices in the framework of the new EU regulation. Reviews Aquac 13(3):1661–1682.

    Article  CAS  Google Scholar 

  • Ghamkhar R, Hartleb C, Wu F, Hicks A (2020) Life cycle assessment of a cold weather aquaponic food production system. J Clean Prod 244:118767.

    Article  Google Scholar 

  • Goddek S, Joyce A, Kotzen B, Dos-Santos M (2019) Aquaponics and global food challenges, in: Aquaponics food production systems. Springer, pp. 3–17

  • Goodman ER (2011) Aquaponics: Community and economic development, Dissertation. Massachusetts Institute of Technology

  • Greenfeld A, Becker N, Mcilwain J, Fotedar R, Bornman JF (2018) Economically viable aquaponics? Identifying the gap between potential and current uncertainties. Rev Aquac 11(3):848–862.

    Article  Google Scholar 

  • Greenfeld A, Becker N, Bornman JF, Spatari S, Angel DL (2021) Monetizing environmental impact of integrated aquaponic farming compared to separate systems. Sci Tot Environ 792:148459.

    Article  CAS  Google Scholar 

  • Guinée JB, Heijungs R, Huppes G, Zamagni A, Masoni P, Buonamici R, Ekvall T, Rydberg T (2011) Life cycle assessment: past, present, and future. Environ. Sci. Technol. 90–96

  • Hauschild MZ, Huijbregts MAJ (2015) Introducing life cycle impact assessment, in: Life Cycle Impact Assessment. Springer, pp. 1–16

  • Hindelang M, Gheewala SH, Mungkung R, Bonnet S (2014) Environmental sustainability assessment of a media based aquaponics system in Thailand. J Sustain Energy Environ 5:109–116

    Google Scholar 

  • Hochman G, Hochman E, Naveh N, Zilberman D (2018) The synergy between aquaculture and hydroponics technologies: the case of lettuce and tilapia. Sustainability 10(10):3479.

    Article  Google Scholar 

  • Hollmann ER (2017) An aquaponics life cycle assessment: evaluating an inovative method for growing local fish and lettuce. Dissert Univ Colorado.

    Article  Google Scholar 

  • Ianchenko A, Proksch G (2019) Urban food systems: applying life cycle assessment in Built environments and aquaponics. Build Technol Educ Soc 2019:29.

    Article  Google Scholar 

  • ISO 14040 (2006) Environmental management - life cycle assessment-Principles Framework. CEN, European Comm. Stand. Brussels

  • Jaeger C, Foucard P, Tocqueville A, Nahon S, Aubin J (2019) Mass balanced based LCA of a common carp-lettuce aquaponics system. Aquac Eng 84:29–41.

    Article  Google Scholar 

  • Joyce A, Goddek S, Kotzen B, Wuertz S (2019) Aquaponics: closing the cycle on limited water, land and nutrient resources, in: Aquaponics food production systems. Springer, pp. 19–34

  • Junge R, Konig B, Villarroel M, Komives T, Jijakli MHH (2017) Strategic Points in Aquaponics. Water (Switzerland) 9:1–9

    Google Scholar 

  • Kledal PR, König B, Matulić D (2019) Aquaponics: the ugly duckling in organic regulation, in: Aquaponics Food Production Systems. Springer, pp. 487–500

  • König B, Janker J, Reinhardt T, Villarroel M, Junge R (2018) Analysis of aquaponics as an emerging technological innovation system. J Clean Prod 180:232–243.

    Article  Google Scholar 

  • König B, Junge R, Bittsanszky A, Villarroel M, Komives T (2016) On the Sustainability of Aquaponics. Ecocycles 2:26–32

    Article  Google Scholar 

  • Körner O, Bisbis MB, Baganz GFM, Baganz D, Staaks GBO, Monsees H, Goddek S, Keesman KJ (2021) Environmental impact assessment of local decoupled multi-loop aquaponics in an urban context J Clean. Prod 313:127735.

    Article  Google Scholar 

  • Laidlaw J, Magee L (2014) Towards urban food sovereignty: the trials and tribulations of community-based aquaponics enterprises in Milwaukee and Melbourne. Local Environ 21:573–590

    Article  Google Scholar 

  • Love DC, Fry JP, Li X, Hill ES, Genello L, Semmens K, Thompson RE (2015a) Commercial aquaponics production and profitability: findings from an international survey. Aquaculture 435:67–74.

    Article  Google Scholar 

  • Love DC, Tokunaga K (2015) Water use and economics of small-scale commercial aquaponics.

  • Love DC, Uhl MS, Genello L (2015) Energy and water use of a small-scale raft aquaponics system in Baltimore, Maryland, United States. Aquac Eng 68.

  • Maucieri C, Forchino AA, Nicoletto C, Junge R, Pastres R, Sambo P, Borin M (2018) Life cycle assessment of a micro aquaponic system for educational purposes built using recovered material. J Clean Prod 172:3119–3127

    Article  Google Scholar 

  • McMurtry MR, Sanders DC, Cure JD, Hodson RG, Haning BC, St Amand EC (1997) Efficiency of water use of an integrated fish/vegetable co-culture system. J World Aquac Soc 28:420–428

    Article  Google Scholar 

  • Rakocy JE (2012) Aquaponics—Integrating fish and plant culture, in: aquaculture production systems. Wiley, Hoboken, pp. 344–386.

  • Rupasinghe JW, Kennedy JOS (2010) Economic benefits of integrating a hydroponic-lettuce system into a barramundi fish production system. Aquac Econ Manag 14:81–96.

    Article  Google Scholar 

  • Silva L, Valdés-Lozano D, Escalante E, Gasca-Leyva E (2018) Dynamic root floating technique: an option to reduce electric power consumption in aquaponic systems. J Clean Prod 183.

  • Somerville C, Cohen M, Pantanella E, Stankus A, Lovatelli A (2014) Small-scale aquaponic food production. FAO, Rome

    Google Scholar 

  • Suhl J, Dannehl D, Baganz D, Schmidt U, Kloas W (2018) An innovative suction filter device reduces nitrogen loss in double recirculating aquaponic systems. Aquac Eng 82, 63–72.

  • Tokunaga K, Tamaru C, Ako H, Leung P (2015) Economics of small-scale commercial aquaponics in Hawai’i. J World Aquac Soc 46:20–32

    Article  Google Scholar 

  • Turnšek M, Morgenstern R, Schröter I, Mergenthaler, M, Hüttel S, Leyer M (2019) Commercial aquaponics: a long road ahead BT - aquaponics food production systems: combined aquaculture and hydroponic production technologies for the future, in: Goddek S, Joyce A, Kotzen B, Burnell GM (Eds.), Aquaponics Food Production Systems. Springer International Publishing, Cham, pp. 453–485.

  • Villarroel M, Junge R, Komives T, König B, Plaza I, Bittsánszky A, Joly A (2016) Survey of Aquaponics in Europe. Water (Switzerland) 8:3–9

    Google Scholar 

  • Valappil G (2021) Environmental and economic implications of small-scale Canadian aquaponics: a life cycle study. Dissertation, University of Waterloo.

  • Wu F, Ghamkhar R, Ashton W, Hicks AL (2019) Sustainable seafood and vegetable production: aquaponics as a potential opportunity in urban areas. Integr Environ Assess Manag 15:832–843

    Article  Google Scholar 

  • Xie K, Rosentrater K (2015) Life cycle assessment (LCA) and techno-economic analysis (TEA) of tilapia-basil aquaponics, in: 2015 ASABE Annual International Meeting. p. 29

  • Yacout DMM, Soliman NF, Yacout MM (2016) Comparative life cycle assessment (LCA) of Tilapia in two production systems: semi-intensive and intensive. Int J Life Cycle Assess 21:806–819.

    Article  CAS  Google Scholar 

Download references


This work was supported by an advanced studies scholarship from the University of Haifa.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Dror L. Angel.

Ethics declarations

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greenfeld, A., Becker, N., Bornman, J.F. et al. Is aquaponics good for the environment?—evaluation of environmental impact through life cycle assessment studies on aquaponics systems. Aquacult Int 30, 305–322 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: