Skip to main content

Fatty acid content and composition in tissues of Baikal grayling (Thymallus baicalensis), with a special focus on DHA synthesis

Abstract

Long-chain polyunsaturated fatty acids of n-3 family (n-3 LC PUFAs) are physiologically essential compounds required for normal growth and development of animals, including humans. The ability of fish species to synthesize n-3 LC PUFAs varies significantly across different trophic levels. We have studied fatty acid (FA) content (mg/g of wet weight) and level (% of total FAs) in the brain, liver, heart, intestine, female and male gonads, muscle, and adipose tissues of commercially important wild freshwater Baikal grayling. Additionally, FA content and level of Baikal grayling juveniles have been studied. In all tissues of Baikal grayling, some LC PUFAs, namely, 24:5n-3 and 24:6n-3 (C24 PUFAs), have been found. These FAs are the intermediate products in the synthesis of docosahexaenoic acid (DHA, 22:6n-3) by the Sprecher pathway. The levels of C24 PUFAs in tissues differed significantly: the highest levels of C24 PUFAs were found in adipose tissue and the lowest values in the gonads of females, liver, brain, and head of juveniles. According to the dynamics of DHA and C24 PUFAs, the maximum rate of DHA synthesis is achieved in brain of Baikal grayling, while the lowest rate of DHA synthesis probably occurs in adipose tissue. Although all studied tissues had differences in the number of FAs and their levels, 16:0, 18:1n-9, 16:1n-7, 20:5n-3, and DHA dominated. Male gonads contained an extremely high level of furan FAs — presumably beneficial substances for human health. Additionally, the nutritional value of the tissues of Baikal grayling as a source of n-3 LC PUFAs for humans has been estimated.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Barry KJ, Trushenski JT (2020) Reevaluating polyunsaturated fatty acid essentiality in rainbow trout. N Am J Aquac 82:251–264. https://doi.org/10.1002/naaq.10133

    Article  Google Scholar 

  2. Batna A, Scheinkönig J, Spiteller G (1993) The occurrence of furan fatty acids in Isochrysis sp. and Phaeodactylum tricornutum. Biochim Biophys Acta (BBA) Lipids Lipid Metabol 1166:171–176. https://doi.org/10.1016/0005-2760(93)90093-O

    CAS  Article  Google Scholar 

  3. Betancor MB, Oboh A, Ortega A, Mourente G, Navarro JC, de la Gándara F, Tocher DR, Monroig Ó (2020) Molecular and functional characterisation of a putative elovl4 gene and its expression in response to dietary fatty acid profile in Atlantic bluefin tuna (Thunnus thynnus). Comp Biochem Physiol B: Biochem Mol Biol 240:110372. https://doi.org/10.1016/j.cbpb.2019.110372

    CAS  Article  Google Scholar 

  4. Bogatov VV, Sushchik NN, Makhutova ON, Kolmakova AA, Gladyshev MI (2021) Allochthonous and autochthonous food sources for zoobenthos in a forest stream. Russ J Ecol 52(3):253–256. https://doi.org/10.1134/S1067413621030048

    Article  Google Scholar 

  5. Bowzer J, Jackson C, Trushenski J (2016) Hybrid striped bass feeds based on fish oil, beef tallow, and eicosapentaenoic acid/docosahexaenoic acid supplements: insight regarding fish oil sparing and demand for n–3 long-chain polyunsaturated fatty acids. J Anim Sci 94:978–988. https://doi.org/10.2527/jas.2015-9199

    CAS  Article  PubMed  Google Scholar 

  6. Brown AM (2005) A new software for carrying out one-way ANOVA post hoc tests. Comput Methods Prog Biomed 79:89–95. https://doi.org/10.1016/j.cmpb.2005.02.007

    Article  Google Scholar 

  7. Campbell RC (1989) Statistics for biologists. Cambridge University Press

    Book  Google Scholar 

  8. Carmona-Antoñanzas G, Monroig Ó, Dick JR, Davie A, Tocher DR (2011) Biosynthesis of very long-chain fatty acids (C>24) in Atlantic salmon: cloning, functional characterisation, and tissue distribution of an elovl4 elongase. Comp Biochem Physiol B: Biochem Mol Biol 159:122–129. https://doi.org/10.1016/j.cbpb.2011.02.007

    CAS  Article  Google Scholar 

  9. Christie WW, Han X (2010) Lipid analysis: isolation, separation, identification and lipidomic analysis. Oily Press, Bridgwater

    Book  Google Scholar 

  10. Chvalová D, Špička J (2016) Identification of furan fatty acids in the lipids of common carp (Cyprinus carpio L.). Food Chem 200:183–188. https://doi.org/10.1016/j.foodchem.2016.01.029

    CAS  Article  PubMed  Google Scholar 

  11. Crawford MA, Bloom M, Broadhurst CL, Schmidt WF, Cunnane SC, Galli C, Gehbremeskel K, Linseisen F, Lloyd-Smith J, Parkington J (1999) Evidence for the unique function of docosahexaenoic acid during the evolution of the modern hominid brain. Lipids 34:S39–S47. https://doi.org/10.1007/BF02562227

    CAS  Article  PubMed  Google Scholar 

  12. Durnoford E, Shahidi F (2002) Comparison of FA compositions of selected tissues of phocid seals of Eastern Canada using one-way and multivariate techniques. J Am Oil Chem Soc 79:1095–1102. https://doi.org/10.1007/s11746-002-0610-7

    Article  Google Scholar 

  13. Emery JA, Norambuena F, Trushenski J, Turchini GM (2016) Uncoupling EPA and DHA in fish nutrition: dietary demand is limited in Atlantic salmon and effectively met by DHA alone. Lipids 51:399–412. https://doi.org/10.1007/s11745-016-4136-y

    CAS  Article  PubMed  Google Scholar 

  14. Feller SE (2008) Acyl chain conformations in phospholipid bilayers: a comparative study of docosahexaenoic acid and saturated fatty acids. Chem Phys Lipids 153:76–80. https://doi.org/10.1016/j.chemphyslip.2008.02.013

    CAS  Article  PubMed  Google Scholar 

  15. Finn RN, Henderson JR, Fyhn HJ (1995) Physiological energetics of developing embryos and yolk-sac larvae of Atlantic cod (Gadus morhua). II. Lipid metabolism and enthalpy balance. Mar Biol 124:371–379. https://doi.org/10.1007/BF00363910

    Article  Google Scholar 

  16. Food and Agriculture Organization of the United Nations (2010) Fats and fatty acids in human nutrition. Food and Agriculture Organization of the United Nations, Geneva

    Google Scholar 

  17. Gladyshev MI, Moskvicheva AV (2002) Baikal invaders have become dominant in the upper Yenisei benthofauna. Dokl Biol Sci 383:138–140. https://doi.org/10.1023/A:1015341908129

    CAS  Article  PubMed  Google Scholar 

  18. Gladyshev MI, Arts MT, Sushchik NN (2009) Preliminary estimates of the export of omega-3 highly unsaturated fatty acids (EPA+DHA) from aquatic to terrestrial ecosystems. In: Kainz M, Brett MT, Arts MT (eds) Lipids in Aquatic Ecosystems. Springer, New York, pp 179–210. https://doi.org/10.1007/978-0-387-89366-2_8

    Chapter  Google Scholar 

  19. Gladyshev MI, Sushchik NN, Makhutova ON, Kalachova GS, Malyshevskaya KK (2012) Differences in fatty acid composition of food and tissues of grayling from the Yenisei River. Dokl Biochem Biophys 445:194–196. https://doi.org/10.1134/S1607672912040035

    CAS  Article  PubMed  Google Scholar 

  20. Gladyshev MI, Sushchik NN, Makhutova ON (2013) Production of EPA and DHA in aquatic ecosystems and their transfer to the land. Prostagland Other Lipid Mediat 107:117–126. https://doi.org/10.1016/j.prostaglandins.2013.03.002

    CAS  Article  Google Scholar 

  21. Gladyshev MI, Sushchik NN, Dubovskaya OP, Buseva ZF, Makhutova ON, Fefilova EB, Feniova IY, Semenchenko VP, Kolmakova AA, Kalachova GS (2015) Fatty acid composition of cladocera and copepoda from lakes of contrasting temperature. Freshw Biol 60:373–386. https://doi.org/10.1111/fwb.12499

    CAS  Article  Google Scholar 

  22. Gladyshev MI, Sushchik NN, Shulepina SP, Ageev AV, Dubovskaya OP, Kolmakova AA, Kalachova GS (2016) Secondary production of highly unsaturated fatty acids by zoobenthos across rivers contrasting in temperature. River Res Appl 32:1252–1263. https://doi.org/10.1002/rra.2945

    Article  Google Scholar 

  23. Gladyshev MI, Sushchik NN, Tolomeev AP, Dgebuadze YY (2018) Meta-analysis of factors associated with omega-3 fatty acid contents of wild fish. Rev Fish Biol Fish 28:277–299. https://doi.org/10.1007/s11160-017-9511-0

    Article  Google Scholar 

  24. Greze VN (1957) Food resources of fish of the Enisey River and their usage. Izvestiya Vsesoyuznogo nauchno-issledovatelskogo instituta ozernogo i rybnogo khozyaistva 41:1–234

    Google Scholar 

  25. Hamre K, Opstad I, Espe M, Solbakken J, Hemre G-I, Pittman K (2002) Nutrient composition and metamorphosis success of Atlantic halibut (Hippoglossus hippoglossus, L.) larvae fed natural zooplankton or Artemia. Aquac Nutr 8:139–148. https://doi.org/10.1046/j.1365-2095.2002.00201.x

    Article  Google Scholar 

  26. Iverson SJ (2009) Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative determination. In: Kainz M, Brett MT, Arts MT (eds) Lipids in Aquatic Ecosystems. Springer, New York, pp 281–308. https://doi.org/10.1007/978-0-387-89366-2_12

    Chapter  Google Scholar 

  27. Jensen S, Ragnarsdottir O, Johannsson R (2019) Marine sources of furan fatty acids. J Aqua Food Product Technol 28:74–83. https://doi.org/10.1080/10498850.2018.1561569

    CAS  Article  Google Scholar 

  28. Jin M, Monroig Ó, Navarro JC, Tocher DR, Zhou Q-C (2017) Molecular and functional characterisation of two elovl4 elongases involved in the biosynthesis of very long-chain (>C24) polyunsaturated fatty acids in black seabream Acanthopagrus schlegelii. Comp Biochem Physiol B: Biochem Mol Biol 212:41–50. https://doi.org/10.1016/j.cbpb.2017.06.008

    CAS  Article  Google Scholar 

  29. Kabeya N, Fonseca MM, Ferrier DEK, Navarro JC, Bay LK, Francis DS, Tocher DR, Castro LFC, Monroig Ó (2018) Genes for de novo biosynthesis of omega-3 polyunsaturated fatty acids are widespread in animals. Sci Adv 4(5):eaar6849. https://doi.org/10.1126/sciadv.aar6849

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Kennedy SR, Bickerdike R, Berge RK, Porter AR, Tocher DR (2007) Influence of dietary conjugated linoleic acid (CLA) and tetradecylthioacetic acid (TTA) on growth, lipid composition and key enzymes of fatty acid oxidation in liver and muscle of Atlantic cod (Gadus morhua L.). Aquaculture 264:372–382. https://doi.org/10.1016/j.aquaculture.2007.01.013

    CAS  Article  Google Scholar 

  31. Kreps EM, Avrova NF, Chebotarëva MA, Chirkovskaya EV, Krasilnikova VI, Kruglova EE, Levitina MV, Obukhova EL, Pomazanskaya LF, Pravdina NI, Zabelinskii SA (1975) Phospholipids and glycolipids in the brain of marine fish. Comp Biochem Physiol B Comp Biochem 52:283–292. https://doi.org/10.1016/0305-0491(75)90066-8

    CAS  Article  Google Scholar 

  32. Lau DCP, Vrede T, Pickova J, Goedkoop W (2012) Fatty acid composition of consumers in boreal lakes – variation across species, space and time. Freshw Biol 57:24–38. https://doi.org/10.1111/j.1365-2427.2011.02690.x

    CAS  Article  Google Scholar 

  33. Lewkowicz N, Piątek P, Namiecińska M, Domowicz M, Bonikowski R, Szemraj J, Przygodzka P, Stasiołek M, Lewkowicz P (2019) Naturally occurring nervonic acid ester improves myelin synthesis by human oligodendrocytes. Cells 8(8):786. https://doi.org/10.3390/cells8080786

    CAS  Article  PubMed Central  Google Scholar 

  34. Li K, Sinclair AJ, Zhao F, Li D (2018) Uncommon fatty acids and cardiometabolic health. Nutrients 10:1559. https://doi.org/10.3390/nu10101559

    CAS  Article  PubMed Central  Google Scholar 

  35. Maazouzi C, Masson G, Izquierdo MS, Pihan J-C (2007) Fatty acid composition of the amphipod Dikerogammarus villosus: feeding strategies and trophic links. Comp Biochem Physiol A Molec Integr Physiol 147:868–875. https://doi.org/10.1016/j.cbpa.2007.02.010

    CAS  Article  Google Scholar 

  36. Makhutova ON, Protasov AA, Gladyshev MI, Sylaieva AA, Sushchik NN, Morozovskaya IA, Kalachova GS (2013) Feeding spectra of bivalve mollusks Unio and Dreissena from Kanevskoe Reservoir, Ukraine: are they food competitors or not? Zool Stud 52(1):1–10. https://doi.org/10.1186/1810-522X-52-56

    Article  Google Scholar 

  37. Makhutova ON, Shulepina SP, Sharapova TA, Dubovskaya OP, Sushchik NN, Baturina MA, Pryanichnikova EG, Kalachova GS, Gladyshev MI (2016) Content of polyunsaturated fatty acids essential for fish nutrition in zoobenthos species. Freshwater Sci 35:1222–1234. https://doi.org/10.1086/688760

    Article  Google Scholar 

  38. Makhutova ON, Shulepina SP, Sharapova TA, Kolmakova AA, Glushchenko LA, Kravchuk ES, Gladyshev MI (2018) Intraspecies variability of fatty acid content and composition of a cosmopolitan benthic invertebrate, Gammarus lacustris. Inland Waters 8:356–367. https://doi.org/10.1080/20442041.2018.1487157

    CAS  Article  Google Scholar 

  39. Monroig Ó, Rotllant J, Cerdá-Reverter JM, Dick JR, Figueras A, Tocher DR (2010) Expression and role of elovl4 elongases in biosynthesis of very long-chain fatty acids during zebrafish Danio rerio early embryonic development. Biochim Biophys Acta Molec Cell Biol Lipids 1801:1145–1154. https://doi.org/10.1016/j.bbalip.2010.06.005

    CAS  Article  Google Scholar 

  40. Monroig Ó, Webb K, Ibarra-Castro L, Holt GJ, Tocher DR (2011) Biosynthesis of long-chain polyunsaturated fatty acids in marine fish: characterization of an elovl4-like elongase from Cobia rachycentron canadum and activation of the pathway during early life stages. Aquaculture 312:145–153. https://doi.org/10.1016/j.aquaculture.2010.12.024

    CAS  Article  Google Scholar 

  41. Monroig O, Tocher DR, Castro LFC (2018) Polyunsaturated fatty acid biosynthesis and metabolism in fish. In: Burdge GC (ed) Polyunsaturated fatty acid metabolism. Elsevier Inc., Cambridge, pp 31–60. https://doi.org/10.1016/B978-0-12-811230-4.00003-X

    Chapter  Google Scholar 

  42. Morais S, Mendes AC, Castanheira MF, Coutinho J, Bandarra N, Dias J, Conceição LEC, Pousão-Ferreira P (2014) New formulated diets for Solea senegalensis broodstock: Effects of parental nutrition on biosynthesis of long-chain polyunsaturated fatty acids and performance of early larval stages and juvenile fish. Aquaculture 432:374–382. https://doi.org/10.1016/j.aquaculture.2014.04.033

    CAS  Article  Google Scholar 

  43. Mourente G, Díaz-Salvago E (1999) Characterization of antioxidant systems, oxidation status and lipids in brain of wild-caught size-class distributed Aristeus antennatus (Risso, 1816) Crustacea, Decapoda. Comp Biochem Physiol B: Biochem Mol Biol 124:405–416. https://doi.org/10.1016/S0305-0491(99)00133-9

    Article  Google Scholar 

  44. Mourente G, Tocher DR (1992) Lipid class and fatty acid composition of brain lipids from Atlantic herring (Clupea harengus) at different stages of development. Mar Biol 112:553–558. https://doi.org/10.1007/BF00346172

    CAS  Article  Google Scholar 

  45. Müller F, Hogg M, Vetter W (2020) Valuable furan fatty acids in soybeans and soy products. Eur Food Res Technol 246:1383–1392. https://doi.org/10.1007/s00217-020-03497-w

    CAS  Article  Google Scholar 

  46. Oboh A, Kabeya N, Carmona-Antoñanzas G, Castro LFC, Dick JR, Tocher DR, Monroig O (2017a) Two alternative pathways for docosahexaenoic acid (DHA, 22:6n-3) biosynthesis are widespread among teleost fish. Sci Rep 7(1):3889. https://doi.org/10.1038/s41598-017-04288-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Oboh A, Navarro JC, Tocher DR, Monroig O (2017b) Elongation of very long-chain (>C24) fatty acids in Clarias gariepinus: cloning, functional characterization and tissue expression of elovl4 elongases. Lipids 52:837–848. https://doi.org/10.1007/s11745-017-4289-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Ota T, Takagi T (1991) Furan fatty acids of lipids from serum and sexual organs of chum salmon. Nippon Suisan Gakkaishi 57:1565–1571. https://doi.org/10.2331/suisan.57.1565

    CAS  Article  Google Scholar 

  49. Pacetti D, Balzano M, Colella S, Santojanni A, Frega NG (2013) Effect of spawning on furan fatty acid profile of edible muscle and organ tissues from sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus). J Agric Food Chem 61:3969–3977. https://doi.org/10.1021/jf400555u

    CAS  Article  PubMed  Google Scholar 

  50. Petrov KA, Dudareva LV, Nokhsorov VV, Stoyanov KN, Makhutova ON (2020) Fatty acid content and composition of the Yakutian horses and their main food source: living in extreme winter conditions. Biomolecules 10(2):315. https://doi.org/10.3390/biom10020315

    CAS  Article  PubMed Central  Google Scholar 

  51. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  52. Rasal A, Roy S, Rana RS, Murali S, Krishna G, Gupta S, Gireesh-Babu P (2016) Molecular cloning and nutritional regulation of putative ∆6 desaturase MRNA from striped catfish (Pangasianodon hypophthalmus). Aquaculture 451:413–420. https://doi.org/10.1016/j.aquaculture.2015.10.003

    CAS  Article  Google Scholar 

  53. Ravet JL, Brett MT, Arhonditsis GB (2010) The effects of seston lipids on zooplankton fatty acid composition in Lake Washington, Washington, USA. Ecology 91:180–190. https://doi.org/10.1890/08-2037.1

    Article  PubMed  Google Scholar 

  54. SanGiovanni JP, Chew EY (2005) The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res 24:87–138. https://doi.org/10.1016/j.preteyeres.2004.06.002

    CAS  Article  PubMed  Google Scholar 

  55. Sargent JR, Tocher DR, Bell JG (2002) The lipids. In: Halver JE, Hardy RW (eds) Fish Nutrition, 3rd edn. Academic Press, San Diego, pp 181–257

    Google Scholar 

  56. Šimat V, Vlahović J, Soldo B, Generalić Mekinić I, Čagalj M, Hamed I, Skroza D (2020) Production and characterization of crude oils from seafood processing by-products. Food Biosci 2(5):470–477. https://doi.org/10.1016/j.fbio.2019.100484

    CAS  Article  Google Scholar 

  57. Spiteller G (2005) Furan fatty acids: occurrence, synthesis, and reactions. Are furan fatty acids responsible for the cardioprotective effects of a fish diet? Lipids 40:755–771. https://doi.org/10.1007/s11745-005-1438-5

    CAS  Article  PubMed  Google Scholar 

  58. Standal IB, Praël A, McEvoy L, Axelson DE, Aursand M (2008) Discrimination of cod liver oil according to wild/farmed and geographical origins by GC and 13 C NMR. J Am Oil Chem Soc 85:105–112. https://doi.org/10.1007/s11746-007-1174-x

    CAS  Article  Google Scholar 

  59. Sushchik NN, Gladyshev MI, Kalachova GS, Makhutova ON, Ageev AV (2006) Comparison of seasonal dynamics of the essential PUFA contents in benthic invertebrates and grayling Thymallus arcticus in the Yenisei river. Comp Biochem Physiol B: Biochem Mol Biol 145:278–287. https://doi.org/10.1016/j.cbpb.2006.05.014

    CAS  Article  Google Scholar 

  60. Sushchik NN, Gladyshev MI, Kalachova GS (2007) Seasonal dynamics of fatty acid content of a common food fish from the Yenisei River, Siberian grayling, Thymallus arcticus. Food Chem 104:1353–1358. https://doi.org/10.1016/j.foodchem.2007.01.050

    CAS  Article  Google Scholar 

  61. Sushchik NN, Makhutova ON, Rudchenko AE, Glushchenko LA, Shulepina SP, Kolmakova AA, Gladyshev MI (2020) Comparison of fatty acid contents in major lipid classes of seven salmonid species from Siberian Arctic lakes. Biomolecules 10(3):419. https://doi.org/10.3390/biom10030419

    CAS  Article  PubMed Central  Google Scholar 

  62. Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11(2):107–184. https://doi.org/10.1080/713610925

    CAS  Article  Google Scholar 

  63. Tocher DR (2010) Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac Res 41:717–732. https://doi.org/10.1111/j.1365-2109.2008.02150.x

    CAS  Article  Google Scholar 

  64. Tocher DR (2015) Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 449:94–107. https://doi.org/10.1016/j.aquaculture.2015.01.010

    CAS  Article  Google Scholar 

  65. Trushenski J, Schwarz M, Bergman A, Rombenso A, Delbos B (2012) DHA is essential, EPA appears largely expendable, in meeting the n−3 long-chain polyunsaturated fatty acid requirements of juvenile Cobia rachycentron canadum. Aquaculture 326–329:81–89. https://doi.org/10.1016/j.aquaculture.2011.11.033

    CAS  Article  Google Scholar 

  66. Tveiten H, Jobling M, Andreassen I (2004) Influence of egg lipids and fatty acids on egg viability, and their utilization during embryonic development of spotted wolf-fish, Anarhichas minor Olafsen. Aquac Res 35(2):152–161. https://doi.org/10.1111/j.1365-2109.2004.00996.x

    Article  Google Scholar 

  67. Twining CW, Brenna JT, Hairston NG Jr, Flecker AS (2016) Highly unsaturated fatty acids in nature: what we know and what we need to learn. Oikos 125(6):749–760. https://doi.org/10.1111/oik.02910

    CAS  Article  Google Scholar 

  68. Vetter W, Wendlinger C (2013) Furan fatty acids – valuable minor fatty acids in food. Lipid Technol 25:7–10. https://doi.org/10.1002/lite.201300247

    CAS  Article  Google Scholar 

  69. Wassall SR, Stillwell W (2008) Docosahexaenoic acid domains: the ultimate non-raft membrane domain. Chem Phys Lipids 153:57–63. https://doi.org/10.1016/j.chemphyslip.2008.02.010

    CAS  Article  PubMed  Google Scholar 

  70. Weiss SJ, Gonçalves DV, Secci-Petretto G, Englmaier GK, Gomes-Dos-Santos A, Denys GPJ, Persat H, Antonov A, Hahn C, Taylor EB, Froufe E (2020) Global systematic diversity, range distributions, conservation and taxonomic assessments of graylings (Teleostei: Salmonidae; Thymallus spp.). Org Divers Evol 21:25–42. https://doi.org/10.1007/s13127-020-00468-7

    Article  Google Scholar 

  71. Xu L, Sinclair AJ, Faiza M, Li D, Han X, Yin H, Wang Y (2017) Furan fatty acids – beneficial or harmful to health? Prog Lipid Res 68:119–137. https://doi.org/10.1016/j.plipres.2017.10.002

    CAS  Article  PubMed  Google Scholar 

  72. Xu W, Wang S, You C, Zhang Y, Monroig Ó, Tocher DR, Li Y (2020) The catadromous teleost Anguilla japonica has a complete enzymatic repertoire for the biosynthesis of docosahexaenoic acid from α-linolenic acid: cloning and functional characterization of an elovl2 elongase. Comp Biochem Physiol B: Biochem Mol Biol 240:110373. https://doi.org/10.1016/j.cbpb.2019.110373

    CAS  Article  Google Scholar 

  73. Yan J, Liang X, Cui Y, Cao X, Gao J (2018) Elovl4 can effectively elongate C18 polyunsaturated fatty acids in loach Misgurnus anguillicaudatus. Biochem Biophys Res Commun 495:2637–2642. https://doi.org/10.1016/j.bbrc.2017.12.123

    CAS  Article  PubMed  Google Scholar 

  74. Zhao N, Monroig Ó, Navarro JC, Xiang X, Li Y, Du J, Li J, Xu W, Mai K, Ai Q (2019) Molecular cloning, functional characterization and nutritional regulation of two elovl4b elongases from rainbow trout (Oncorhynchus mykiss). Aquaculture 511:734221. https://doi.org/10.1016/j.aquaculture.2019.734221

    CAS  Article  Google Scholar 

  75. Zuev IV, Andrushchenko PY, Chuprov SM, Zotina TA (2021) Structural features of scales of Baikal grayling Thymallus baicalensis under conditions of an altered hydrological regime. Inland Water Biol 14(1):60–66. https://doi.org/10.1134/S1995082920060176

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge E.L. Krasova for linguistic check and improvements; M.Yu. Trusova, A.E. Rudchenko, and T.A. Zotina for their technical support during sampling.

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Funding

The research was funded by a grant from the Russian Foundation for Basic Research (RFBR) N 20-04-00594, by the state assignment within the framework of the Basic Research Program of the Russian Federation (topic no. 51.1.1) and the state assignment of the Ministry of Science and Higher Education of the Russian Federation to Siberian Federal University in 2020 (Project no. FSRZ-2020-0006 “Biologically active substances in environmental, biotechnological and medical systems”).

Author information

Affiliations

Authors

Contributions

Conceptualization, O.N.M.; methodology, O.N.M.; software, K.N.S.; validation, O.N.M.; formal analysis, O.N.M. and K.N.S.; investigation, O.N.M. and K.N.S.; data curation, O.N.M.; writing—original draft preparation, review and editing O.N.M.; supervision, O.N.M.; project administration, O.N.M. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Olesia N. Makhutova.

Ethics declarations

Ethics approval

The fishes used in this paper were purchased from licensed fishermen.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Gavin Burnell

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Makhutova, .N., Stoyanov, K.N. Fatty acid content and composition in tissues of Baikal grayling (Thymallus baicalensis), with a special focus on DHA synthesis. Aquacult Int 29, 2415–2433 (2021). https://doi.org/10.1007/s10499-021-00755-w

Download citation

Keywords

  • Docosahexaenoic fatty acid
  • Sprecher pathway
  • Fish diet
  • Furan fatty acids
  • Aquaculture