Skip to main content

Advertisement

Log in

Effects of dietary Bacillus licheniformis on growth performance, intestinal morphology, intestinal microbiome, and disease resistance in common carp (Cyprinus carpio L.)

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

This study was to evaluate the growth, intestinal morphology, intestinal flora, and anti-infection activity against Aeromonas hydrophila in common carp upon adding Bacillus licheniformis to the feed. Four experimental diets supplemented with different concentrations of B. licheniformis were as follows: 0 (CK), 106 colony forming units (CFU)/g (A), 107 CFU/g (B), and 108 CFU/g (C). After 60 days of feeding trial, the fish were intraperitoneally injected with 100 μL of A. hydrophila (LD50=5×106 CFU/mL) every day for a week to measure cytokines. Fish in group C showed the best growth indexes (weight gain rate: 186.88; specific growth rate: 1.76; and feed conversion rate: 1.07). The final body weight, weight gain rate, and specific growth rate in group C were increased by 47.9%, 87.4%, and 53.0%, feed conversion ratio reduced by 42.5%. Fish showed the highest villus height of intestine in group C. The intestinal flora analysis showed that, the richness of phylum, Firmicutes in the treatment groups significantly increased, and that of Bacteroides decreased remarkably. After the infection with A. hydrophila, B. licheniformis at 108 CFU/g significantly upregulated protein levels of pro-inflammatory cytokines (TNF-α, IL-6) and anti-inflammatory cytokines (IL-10, TGF-β) compared with the control group. These results indicated that dietary supplementation of B. licheniformis not only increased the growth and influenced the intestinal development and disease resistance of common carp, but also altered the intestine microbiota structure. Furthermore, in our study, the optimal concentration of B. licheniformis in diets for common carp was equal to 108 CFU/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  • Abdallah IN, Ragab SH, Abd EBA, Shoeib ARS, Yasser A, Dina F (2011) Frequency of Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian children and adults [J]. Arch Med Sci 7:501–507

    Google Scholar 

  • Azarin H, Aramli MS, Imanpour MR, Rajabpour M (2015) Effect of a probiotic containing Bacillus licheniformis and Bacillus subtilis and ferroin solution on growth performance, body composition and haematological parameters in Kutum (Rutilus frisii kutum) fry. Probiotics Antimicrob Proteins 7(1):31–37

    Article  CAS  PubMed  Google Scholar 

  • Byndloss MX, Bäumler AJ (2018) The germ-organ theory of non-communicable diseases. Nat Rev Microbiol 16:103–110

    Article  CAS  PubMed  Google Scholar 

  • Carnevali O, Zamponi MC, Sulpizio R, Rollo A, Cresci A (2004) Administration of probiotic strain to improve sea bream wellness during development [J]. Aquac Int 12(4):377–386

    Article  Google Scholar 

  • Chandni T, Shekhar N, Rup L, Ram KN (2018) Fish gut microbiome: current approaches and future perspectives. Indian J Microbiol 58(4):397–414

    Article  Google Scholar 

  • Chang XL, Feng JC, Guo XR, Huang MY, Nie GX, Zhang JX (2018) Dietary supplementation with Rehmannia glutinosa affects the composition of intestinal microorganisms in common carp. J Basic Microbiol 58(12):1023–1032

    Article  CAS  PubMed  Google Scholar 

  • Chiu KH, Liu WS (2014) Dietary administration of the extract of Rhodobacter sphaeroides WL-APD911 enhances the growth performance and innate immune responses of seawater red tilapia (Oreochromis mossambicus×Oreochromis niloticus). Aquaculture 418-419:32–38

    Article  CAS  Google Scholar 

  • De Rodriganez MS, Diaz-Rosales P, Chabrillon M, Smidt H, Arijo S, Leon-Rubio J, Alarcon F, Balebona M, Morinigo M, Cara J, Moyano F (2010) Effect of dietary administration of probiotics on growth and intestine functionality of juvenile Senegalese sole (Solea senegalensis, Kaup 1858). Aquac Nutr 15(2):177–185

    Article  Google Scholar 

  • Delwin AE, Cai J, Lu Y, Yu H, Chen L, Jian J, Tang J, Liang J, Kuebutornye FK (2018) Effects of a commercial probiotic BS containing Bacillus subtilis and Bacillus licheniformis on growth, immune response and disease resistance in Nile tilapia, Oreochromis niloticus[J]. Fish Shellfish Immunol 82:229–238

    Article  Google Scholar 

  • Dimitroglou A, Merrifield DL, Moate R, Davies SJ, Spring P, Sweetman J, Bradley G (2009) Dietary mannan oligosaccharide supplementation modulates intestinal microbial ecology and improves gut morphology of rainbow trout, Oncorhynchus mykiss (Walbaum) [J]. J Anim Sci 87(10):3226–3234

    Article  CAS  PubMed  Google Scholar 

  • Felix KA, Kuebutornye DAE, Lu YS (2019) A review on the application of Bacillus as probiotics in aquaculture. Fish Shellfish Immunol 87:820–828

    Article  Google Scholar 

  • Feng JC, Chang XL, Zhang YR, Yan X, Zhang JX, Nie GX (2019) Effects of Lactococcus lactis from Cyprinus carpio L. as probiotics on growth performance, innate immune response and disease resistance against Aeromonas hydrophila. Fish Shellfish Immunol 93:73–81

    Article  CAS  PubMed  Google Scholar 

  • Gao XL, Zhang M, Li X, Han Y, Wu FC, Liu Y (2018) Effects of a probiotic (Bacillus licheniformis) on the growth, immunity, and disease resistance of Haliotis discus hannai Ino. Fish Shellfish Immunol 76:143–152

    Article  CAS  PubMed  Google Scholar 

  • Gobi N, Vaseeharan B, Chen JC, Rekha R, Vijayakumar S, Anjugam M, Iswarya A (2018) Dietary supplementation of probiotic Bacillus licheniformis Dahb1 improves growth performance, mucus and serum immune parameters, antioxidant enzyme activity as well as resistance against Aeromonas hydrophila in tilapia Oreochromis mossambicus. Fish Shellfish Immunol 76:501–508

    Article  Google Scholar 

  • Gomez-Gil B, Roque A, Turnbull JF (2000) The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture 191(1-3):259–270

    Article  Google Scholar 

  • Hai NV (2015) Research findings from the use of probiotics in tilapia aquaculture: a review. Fish Shellfish Immunol 45(2):592–597

    Article  CAS  PubMed  Google Scholar 

  • Han B, Long WQ, He JY, Liu YJ, Si YQ, Tian LX (2015) Effects of dietary Bacillus licheniformis on growth performance, immunological parameters, intestinal morphology and resistance of juvenile Nile tilapia (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol 46(2):225–231

    Article  CAS  PubMed  Google Scholar 

  • Hong HA, Hong DL, Cutting SM (2010) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29(4):813–835

    Article  Google Scholar 

  • Irianto A, Austin B (2002) Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 25(6):333–342

    Article  CAS  Google Scholar 

  • Lazado CC, Caipang Christopher Marlowe A (2014) Mucosal immunity and probiotics in fish. Fish Shellfish Immunol 39(1):78–89

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Lee BH (2010) Esterolytic and lipolytic activities of Lactobacillus Casei-subsp-Casei LLG. J Food Sci 55(1):119–122

    Article  Google Scholar 

  • Li MO, Flavell RA (2008) Contextual regulation of inflammation: a duet by transforming growth factor-β and interleukin-10. Immunity 28:468–476

    Article  PubMed  Google Scholar 

  • Li HD, Tian XL, Dong SL (2018) Growth performance, non-specific immunity, intestinal histology and disease resistance of Litopenaeus vannamei fed on a diet supplemented with live cells of Clostridium butyricum. Aquaculture 498:470–481

    Article  Google Scholar 

  • Madani NSH, Adorian TJ, Farsani HG, Hoseinifar SH (2018) The effects of dietary probiotic Bacilli (Bacillus subtilis and Bacillus licheniformis) on growth performance, feed efficiency, body composition and immune parameters of whiteleg shrimp (Litopenaeus vannamei) postlarvae. Aquac Res 49(5):1926–1933

    Article  Google Scholar 

  • Merrifield DL, Dimitroglou A, Bradley G, Baker RTM, Davies SJ (2010) Soybean meal alters autochthonous microbial populations, microvilli morphology and compromises intestinal enterocyte integrity of rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 32(9):755–766

    Article  Google Scholar 

  • Midhun SJ, Neethu S, Arun D, Vysakh A, Divya L, Radhakrishnan EK, Jyothis M (2019) Dietary supplementation of Bacillus licheniformis HGA8B improves growth parameters, enzymatic profile and gene expression of Oreochromis niloticus. Aquaculture 505(30):289–296

    Article  CAS  Google Scholar 

  • Najeeb A, Wu B, Mahmood MA, Muhammad M (2015) Probiotics and prebiotics associated with aquaculture: a review. Fish Shellfish Immunol 45(2):733–741

    Article  Google Scholar 

  • Panigrahi A, Kiron V, Satoh S, Hirono I, Kobayashi T, Sugita H, Puangkaew J, Aoki T (2007) Immune modulation and expression of cytokine genes in rainbow trout Oncorhynchus mykiss upon probiotic feeding. Dev Comp Immunol 31:372–382

    Article  CAS  PubMed  Google Scholar 

  • Peddie S, Zou J, Secombes CJ (2002) Immunostimulation in the rainbow trout (Oncorhynchus mykiss) following intraperitoneal administration of Ergosan. Vet Immunol Immunopathol 86(1-2):101–113

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Sánchez T, Balcázar JL, Merrifield DL, Carnevali O, Gioacchini G, Blas ID, Ruiz-Zarzuela I (2011) Expression of immune-related genes in rainbow trout (Oncorhynchus mykiss) induced by probiotic bacteria during Lactococcus garvieae infection. Fish Shellfish Immunol 31(2):196–201

    Article  PubMed  Google Scholar 

  • Qin L, Xiang JH, Xiong F, Wang GT, Zou H, Li WX, Li M, Wu SG (2020) Effects of Bacillus licheniformis on the growth, antioxidant capacity, intestinal barrier and disease resistance of grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 97:344–350

    Article  CAS  PubMed  Google Scholar 

  • Salze G, Mclean E, Schwarz MH, Craig SR (2008) Dietary mannan oligosaccharide enhances salinity tolerance and gut development of larval cobia. Aquaculture 274(1):148–152

    Article  CAS  Google Scholar 

  • Sha YJ, Wang L, Liu M, Jiang KY, Xin F, Wang BJ (2016) Effects of lactic acid bacteria and the corresponding supernatant on the survival, growth performance, immune response and disease resistance of Litopenaeus vannamei. Aquaculture 452:28–36

    Article  CAS  Google Scholar 

  • Sugita H, Tanaka K, Yoshinami M, Deguchi Y (1995) Distribution of Aeromonas species in the intestinal tracts of river fish. Appl Environ Microbiol 61(11):4128–4130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarnecki AM, Burgos FA, Ray CL, Arias CR (2017) Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics. J Appl Microbiol 123(1):1–17

    Article  Google Scholar 

  • Thacker PA, Aumaitre A, Lee BD, Ha JK (2000) Recent advances in the use of enzymes with special reference to β-glucanases and pentosanases in swine rations. Asian Australas J Anim Sci 13:376–385

    CAS  Google Scholar 

  • Tsuchiya C, Sakata T, Sugita H (2010) Novel ecological niche of Cetobacterium somerae, an anaerobic bacterium in the intestinal tracts of freshwater fish. Lett Appl Microbiol 46(1):43–48

    Google Scholar 

  • Udayangani RMC, Dananjaya SHS, Nikapitiya C, Heo GJ, Lee J, Zoysa MD (2017) Metagenomics analysis of gut microbiota and immune modulation in zebrafish (Danio rerio) fed chitosan silver nanocomposites. Fish Shellfish Immunol 66:173–184

    Article  CAS  PubMed  Google Scholar 

  • Vine NG, Leukes WD, Kaiser H (2006) Probiotics in marine larviculture. FEMS Microbiol Rev 30(3):404–427

    Article  CAS  PubMed  Google Scholar 

  • Wang JL, Meng X, Lu RH, Wu C, Luo YT, Yan X (2015) Effects of Rehmannia glutinosa on growth performance, immunological parameters and disease resistance to Aeromonas hydrophila in common carp (Cyprinus carpio L.). Aquaculture 435:293–300

    Article  Google Scholar 

  • Wang XT, Sun YX, Wang LL, Li XY, Qu KL, Xu YP (2017) Synbiotic dietary supplement affects growth, immune responses and intestinal microbiota of Apostichopus japonicus. Fish Shellfish Immunol 68:232–242

    Article  CAS  PubMed  Google Scholar 

  • Xia JH, Lin G, Fu GH, Wan ZY, Lee M, Wang L, Liu XJ, Yue GH (2014) The intestinal microbiome of fish under starvation. BMC Genomics 15(1):266

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang CN, Li XF, Xu WN, Zhang DD, Lu KL, Wang LN, Tian HY, Liu WB (2014) Combined effects of dietary fructooligosaccharide and Bacillus licheniformison growth performance, body composition, intestinal enzymes activities and gut histology of triangular bream (Megalobrama terminalis). Aquac Nutr 21:755–766

    Article  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (31902361), the Key Technology Research Project of Henan Province (202102110106), and the Key Research Projects of Henan Higher Education Institutions (19B240001).

Author information

Authors and Affiliations

Authors

Contributions

Jianxin Zhang is responsible for the design of the research and the writing of the paper. Mengyuan Huang is responsible for the completion of the entire process of the experiment, data analyzing, and paper writing. Junchang Feng and Xulu Chang are responsible for the guidance of the experimental process and revision of the paper. Yongyan Chen and Meng Li are helpful to assist the experiment.

Corresponding author

Correspondence to Xulu Chang.

Ethics declarations

Ethics approval

We strictly comply with and reference the Henan Normal University Research Council’s “Guide for the Care and Use of Laboratory Animals” and “Policy on Humane Care and Use of Laboratory Animals.”

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Gavin Burnell

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Huang, M., Feng, J. et al. Effects of dietary Bacillus licheniformis on growth performance, intestinal morphology, intestinal microbiome, and disease resistance in common carp (Cyprinus carpio L.). Aquacult Int 29, 1343–1358 (2021). https://doi.org/10.1007/s10499-021-00701-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-021-00701-w

Keywords

Navigation