Skip to main content

Responses of dietary supplementation of probiotic effective microorganisms (EMs) in Oreochromis niloticus on growth, hematological, intestinal histopathological, and antiparasitic activities

Abstract

Effective microorganisms (EMs) were commonly used to improve water quality in aquaculture, but its use as a fish nutritional supplement has not been investigated. Thus, two experiments were conducted. The first experiment aimed to evaluate the effects of 0%, 2%, and 4% EM-supplemented diets on the growth, hematological, and histopathological parameters on Oreochromis niloticus under two feeding regimens A and B with either 2:1 meal ratio (morning-concentrated diet) or 1:2 (evening-concentrated diet), respectively. EM-fed fish exhibited significantly higher rates of weight gain, specific growth, survival, and feed conversion efficiency mainly in the morning-concentrated diet. WBC count, HGB, and HCT showed significant differential values at different feeding regimens, with the highest recorded with 2% EM diets. Histopathological parameters such as the intestinal perimeter ratio, mucosal fold length, intraepithelial lymphocyte, and goblet cells were elevated exponentially with increased EMs dose. In the second experiment, EM-supplemented diets were assessed for the antiparasitic activity in fish that was experimentally challenged with Trichodina species. Lower infection rates of 28% and 35% were recorded in EM-treated groups at 2% and 4% EM groups, respectively. We concluded that 2% was more efficient than 4% EMs, both for its beneficial health effects and in avoiding the overdosage-associated toxicity risk.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Aaen SM, Helgesen KO, Bakke MJ, Kaur K, Horsberg TE (2015) Drug resistance in sea lice: a threat to salmonid aquaculture. Trends Parasitol 31:72–81. https://doi.org/10.1016/j.pt.2014.12.006

    CAS  Article  PubMed  Google Scholar 

  • Abdelkhalek NK, Mohamed A, Salama MF, Elmishmishy B, Ali MO, El-Ashram A et al (2018) Molecular identification of Trichodina compacta Van as and Basson, 1989 (Ciliophora: Peritrichia) from cultured Oreochromis niloticus in Egypt and its impact on immune responses and tissue pathology. Parasitol Res 117(6):1907–1914

    Article  Google Scholar 

  • Abdel-Tawwab M, Abdel-Rahman AM, Ismael NEM (2008) Evaluation of commercial live bakers’ yeast, Saccharomyces cerevisiae as a growth and immunity promoter for fry Nile tilapia, Oreochromis niloticus (L.) challenged in situ with Aeromonas hydrophila. Aquaculture 280:185–189. https://doi.org/10.1016/j.Aquaculture.2008.03.055

  • Ahmad HI, Verma AK, Babitha Rani AM, Rathore G, Saharan N, Gora AH (2016) Growth, non-specific immunity and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources. Aquaculture 457:61–67. https://doi.org/10.1016/j.aquaculture.2016.02.011

    Article  Google Scholar 

  • Aly S, Abdel-Galil Ahmed Y, Abdel-Aziz Ghareeb A, Mohamed M (2008) Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish & Shellfish Immunol 25:128–136. https://doi.org/10.1016/j.fsi.2008.03.013

    CAS  Article  Google Scholar 

  • Anand PSS, Kumar S, Panigrahi A, Ghoshal TK, Syama Dayal J, Biswas G, Sundaray JK, de D, Ananda Raja R, Deo AD, Pillai SM, Ravichandran P (2013) Effects of C:N ratio and substrate integration on periphyton biomass, microbial dynamics and growth of Penaeus monodon juveniles. Aquac Int 21:511–524. https://doi.org/10.1007/s10499-012-9585-6

    CAS  Article  Google Scholar 

  • AOAC (2000) Official methods of analysis of AOAC international, 17th edition

  • Apha A (2005) Wpcf Standard methods for the examination of water and wastewater 20

  • Austin B, Austin DA (2012) Bacterial fish pathogens. Springer, Berlin

    Book  Google Scholar 

  • Blaxhall PC, Daisley KW (1973) Routine haematological methods for use with fish blood. J Fish Biol 5:771–781. https://doi.org/10.1111/j.1095-8649.1973.tb04510.x

    Article  Google Scholar 

  • Blewett HJ, Taylor CG (2012) Dietary zinc deficiency in rodents: effects on T-cell development, maturation and phenotypes. Nutrients 4:449–466. https://doi.org/10.3390/nu4060449

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Bolliet V (2000) Effet de l’heure d’alimentation sur la digestibilité, les performances de croissance et le métabolisme protéique chez la truite arc-en-ciel Oncorhynchus mykiss : interactions avec le taux de lipides alimentaires. Aqua Liv Res 13:107–113. https://doi.org/10.1016/S0990-7440(00)00147-9

    Article  Google Scholar 

  • Colombo JP (1994) Klinisch-chemische Urindiagnostik (Clinical chemical urine diagnostics)

  • Dawood MAO, Koshio S (2016) Recent advances in the role of probiotics and prebiotics in carp aquaculture. Rev Aquaculture 454:243–251. https://doi.org/10.1016/j.aquaculture.2015.12.033

    CAS  Article  Google Scholar 

  • Dimitroglou A, Merrifield DL, Moate R, Davies SJ, Spring P, Sweetman J, Bradley G (2009) Dietary mannan oligosaccharide supplementation modulates intestinal microbial ecology and improves gut morphology of rainbow trout, Oncorhynchus mykiss (Walbaum). J Anim Sci 87:3226–3234. https://doi.org/10.2527/jas.2008-1428

    CAS  Article  PubMed  Google Scholar 

  • El-Kady HA, Omar EA, Srour TM, Salem MF (2016) Effect of biofloc, feeding rate and dietary protein levels on growth performance and utilization of Nile tilapia, flathead grey mullet, and thin lipped mullet fingerlings in poly culture. JAdvAgricRes 21:1–18

    Google Scholar 

  • FAO (2018) The State of World Fisheries and Aquaculture. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • Ferguson RMW et al (2010) The effect of Pediococcus acidilactici on the gut microbiota and immune status of on-growing red tilapia (Oreochromis niloticus). J App Microbiol 109:851–862. https://doi.org/10.1111/j.1365-2672.2010.04713.x

    CAS  Article  Google Scholar 

  • Gélineau A, Mambrini M, Leatherland JF, Boujard T (1996) Effect of feeding time on hepatic nucleic acid, plasma T3, T4, and gh concentrations in rainbow trout. Physiol Behav 59:1061–1067. https://doi.org/10.1016/0031-9384(95)02249-X

    Article  PubMed  Google Scholar 

  • Harpaz S, Hakim Y, Slosman T, Eroldogan OT (2005) Effects of adding salt to the diet of Asian sea bass Lates calcarifer reared in fresh or salt water recirculating tanks, on growth and brush border enzyme activity. Aquaculture 248:315–324. https://doi.org/10.1016/j.aquaculture.2005.03.007

    CAS  Article  Google Scholar 

  • Heilman MJ, Spieler RE (1999) The daily feeding rhythm to demand feeders and the effects of timed meal-feeding on the growth of juvenile Florida pompano, Trachinotus carolinus. Aquacult 180:53–64. https://doi.org/10.1016/S0044-8486(99)00140-4

    Article  Google Scholar 

  • Iwashita MK, Nakandakare IB, Terhune JS, Wood T, Ranzani-Paiva MJT (2015) Dietary supplementation with Bacillus subtilis, Saccharomyces cerevisiae and Aspergillus oryzae enhance immunity and disease resistance against Aeromonas hydrophila and Streptococcus iniae infection in juvenile tilapia Oreochromis niloticus. Fish Shellfish Immunol. 43(1):60–66

    CAS  Article  Google Scholar 

  • Jobling M (2016) Fish nutrition research: past, present and future. Aquac Int 24:767–786. https://doi.org/10.1007/s10499-014-9875-2

    CAS  Article  Google Scholar 

  • Kokou F, Sarropoulou E, Cotou E, Rigos G, Henry M, Alexis M, Kentouri M (2015) Effects of fish meal replacement by a soybean protein on growth, histology, selected immune and oxidative status markers of gilthead sea bream, Sparus aurata. J World Aquacult Soci 46:115–128. https://doi.org/10.1111/jwas.12181

    CAS  Article  Google Scholar 

  • Kuebutornye FKA, Abarike ED, Lu Y (2019) A review on the application of Bacillus as probiotics in aquaculture. Fish & Shellfish Immunol

  • Lees F, Baillie M, Gettinby G, Revie CW (2008) The efficacy of emamectin benzoate against infestations of Lepeophtheirus salmonis on farmed Atlantic salmon (Salmo salar L) in Scotland, 2002–2006. PLoS One 3:e1549

    Article  Google Scholar 

  • Liu C-H, Chiu C-H, Wang S-W, Cheng W (2012) Dietary administration of the probiotic, Bacillus subtilis E20, enhances the growth, innate immune responses, and disease resistance of the grouper, Epinephelus coioides. Fish & Shellfish Immunol 33:699–706. https://doi.org/10.1016/j.fsi.2012.06.012

    CAS  Article  Google Scholar 

  • Long L, Yang J, Li Y, Guan C, Wu F (2015) Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture 448:135–141. https://doi.org/10.1016/j.aquaculture.2015.05.017

    CAS  Article  Google Scholar 

  • Mizuno S et al (2016) The epidemiology of the Trichodinid ciliate Trichodina truttae on hatchery-reared and wild salmonid fish in Hokkaido. Fish Pathol 51:199–209. https://doi.org/10.3147/jsfp.51.199

    Article  Google Scholar 

  • Mizuno S, Urawa S, Miyamoto M, Saneyoshi H, Hatakeyama M, Koide N, Ueda H (2017) Epizootiology of the ectoparasitic protozoans Ichthyobodo salmonis and Trichodina truttae on wild chum salmon Oncorhynchus keta. Dis Aquat Org 126:99–109. https://doi.org/10.3354/dao03162

    CAS  Article  PubMed  Google Scholar 

  • Mizuno S et al (2018) Effects of dietary supplementation with oregano essential oil on prevention of the ectoparasitic protozoans Ichthyobodo salmonis and Trichodina truttae in juvenile chum salmon Oncorhynchus keta. J Fish Biol 93:528–539. https://doi.org/10.1111/jfb.13681

    CAS  Article  PubMed  Google Scholar 

  • Newaj-Fyzul A, Austin B (2015) Probiotics, immunostimulants, plant products and oral vaccines, and their role as feed supplements in the control of bacterial fish diseases. J Fish Dis 38(11):937–955

    CAS  Article  Google Scholar 

  • Newaj-Fyzul A, Adesiyun AA, Mutani A, Ramsubhag A, Brunt J, Austin B (2007) Bacillus subtilis AB1 controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss, Walbaum). J App Microbiol 103:1699–1706. https://doi.org/10.1111/j.1365-2672.2007.03402.x

    CAS  Article  Google Scholar 

  • Noeske-Hallin TA, Spieler RE, Parker NC, Suttle MA (1985) Feeding time differentially affects fattening and growth of channel catfish. J Nutr 115:1228–1232. https://doi.org/10.1093/jn/115.9.1228

    CAS  Article  PubMed  Google Scholar 

  • Pirarat N, Pinpimai K, Endo M, Katagiri T, Ponpornpisit A, Chansue N, Maita M (2011) Modulation of intestinal morphology and immunity in nile tilapia (Oreochromis niloticus) by Lactobacillus rhamnosus GG. Res Vet Sci\ 91:e92–e97. https://doi.org/10.1016/j.rvsc.2011.02.014

    CAS  Article  PubMed  Google Scholar 

  • Ranzani-Paiva MJT, Silva-Souza AT (2004) Co-infestation of gills by different parasite groups in the mullet, Mugil platanus Günther, 1880 (Osteichthyes, Mugilidae): effects on relative condition factor. Braz J Biol 64:677–682. https://doi.org/10.1590/S1519-69842004000400016

    CAS  Article  PubMed  Google Scholar 

  • Rapatsa MM, Moyo NAG (2013) Haematological, histological and growth characteristics of Oreochromis mossambicus exposed to effective microorganisms in organically manured aquadams. Asian J Anim Vet Adv 8:852–862. https://doi.org/10.3923/ajava.2013

    Article  Google Scholar 

  • Samanya M, Yamauchi K-E (2002) Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto. Comp Bioch and Physiol Part A: Molecular Integrative Physiol 133:95–104. https://doi.org/10.1016/S1095-6433(02)00121-6

    Article  Google Scholar 

  • Schmidt E, Schmidt FW (1963) Determination of serum GOT and GPT. Enzyme Biol Clin 3

  • Selim KM, Reda RM (2015) Improvement of immunity and disease resistance in the Nile tilapia, Oreochromis niloticus, by dietary supplementation with Bacillus amyloliquefaciens. Fish & Shellfish Immunol 44:496–503. https://doi.org/10.1016/j.fsi.2015.03.004

    CAS  Article  Google Scholar 

  • Senapin S, Shyam KU, Meemetta W, Rattanarojpong T, Dong HT (2018) Inapparent infection cases of tilapia lake virus (TiLV) in farmed tilapia. Aquaculture 487:51–55

    Article  Google Scholar 

  • Sharifuzzaman SM, Austin B (2009) Influence of probiotic feeding duration on disease resistance and immune parameters in rainbow trout. Fish & Shellfish Immunol 27(3):440–445

    CAS  Article  Google Scholar 

  • Sharifuzzaman SM, Austin B (2010a) Development of protection in rainbow trout (Oncorhynchus mykiss, Walbaum) to Vibrio anguillarum following use of the probiotic Kocuria SM1. Fish Shellfish Immunol 29(2):212–216. https://doi.org/10.1016/j.fsi.2010.03.008

    CAS  Article  PubMed  Google Scholar 

  • Sharifuzzaman SM, Austin B (2017) Probiotics for disease control in aquaculture. Diagnosis and Control of Diseases of Fish and Shellfish:189–222

  • Sharifuzzaman SM, Al-Harbi AH, Austin B (2014) Characteristics of growth, digestive system functionality, and stress factors of rainbow trout fed probiotics Kocuria SM1 and Rhodococcus SM2. Aquaculture 418:55–61

    Article  Google Scholar 

  • Soccol CR, Vandenberghe LP, Spier MR, Medeiros ABP, Yamaguishi CT, Lindner JDD et al (2010) The potential of probiotics: a review. Food Technol Biotechnol 48(4):413–434

    CAS  Google Scholar 

  • Standen BT, Rawling MD, Davies SJ, Castex M, Foey A, Gioacchini G et al (2013) Probiotic Pediococcus acidilactici modulates both localised intestinal-and peripheral-immunity in tilapia (Oreochromis niloticus). Fish Shellfish Immunol 35(4):1097–1104

    CAS  Article  Google Scholar 

  • Van As JG, Basson L (1989) A further contribution to the taxonomy of the Trichodinidae (Ciliophora: Peritrichia) and a review of the taxonomic status of some fish ectoparasitic trichodinids. Systematic Parasitol 14(3):157–179

  • Verbeeten BE, Carter CG, Purser GJ (1999) The combined effect of feeding time and ration on growth performance and nitrogen metabolism of greenback flounder. J Fish Biol 55:1328–1343. https://doi.org/10.1111/j.1095-8649.1999.tb02079.x

    CAS  Article  Google Scholar 

  • Welfare FF (2002) Briefing paper 2, Fisheries Society of the British Isles. Granta Information Systems, Cambridge: UK

    Google Scholar 

  • Whyte SK (2007) The innate immune response of finfish – a review of current knowledge. Fish & Shellfish Immunol 23:1127–1151. https://doi.org/10.1016/j.fsi.2007.06.005

    CAS  Article  Google Scholar 

  • Xia Y, Wang M, Gao F, Lu M, Chen G (2019) Effects of dietary probiotic supplementation on the growth, gut health and disease resistance of juvenile Nile tilapia (Oreochromis niloticus). Animal Nutrition

  • Yano T (1996) The nonspecific immune system: humoral defense. The fish immune system: organism, pathogen, and environment

  • Yarmohammadi M, Shabani A, Pourkazemi M, Soltanloo H, Imanpour M (2012) Effect of starvation and re-feeding on growth performance and content of plasma lipids, glucose and insulin in cultured juvenile Persian sturgeon (Acipenser persicus Borodin, 1897). J App Ichthyol 28:692–696

    CAS  Article  Google Scholar 

  • Zhao X, Wang YM, Ye ZF, Xu LN, Ni JR (2006) Kinetics in the process of oil field wastewater treatment by effective microbe B350. China Water Wastewater 22:70

    CAS  Google Scholar 

  • Zhao Y, Zhang W, Xu W, Mai K, Zhang Y, Liufu Z (2012) Effects of potential probiotic Bacillus subtilis T13 on growth, immunity and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus. Fish & Shellfish Immunol 32:750–755. https://doi.org/10.1016/j.fsi.2012.01.027

    CAS  Article  Google Scholar 

  • Zhou Q, Li K, Jun X, Bo L (2009) Role and functions of beneficial microorganisms in sustainable aquaculture. Bioresour Technol 100:3780–3786. https://doi.org/10.1016/j.biortech.2008.12.037

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Attalla Metwally, the Head of Shakshouk Fish Research Station, inland Branch, National Institute of Oceanography and Fisheries (NIOF), Fayoum Governorate, Egypt, for his efforts and excellent support for conducting the experimental work.

Funding

This work was funded by the Aquaculture Division, National Institute of Oceanography and Fisheries (NIOF).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to designing and conducting experiments. MB and AF contributed equally through all stages of the manuscript draft editing and revision.

Corresponding author

Correspondence to Amr Fadel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdel-Aziz, M., Bessat, M., Fadel, A. et al. Responses of dietary supplementation of probiotic effective microorganisms (EMs) in Oreochromis niloticus on growth, hematological, intestinal histopathological, and antiparasitic activities. Aquacult Int 28, 947–963 (2020). https://doi.org/10.1007/s10499-019-00505-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-019-00505-z

Keywords

  • Effective microorganisms
  • Growth performance
  • Hematology
  • Histopathology
  • Challenge
  • Trichodina