Abstract
Various diseases could be transmitted from aquatic species, especially fish, to humans, which is considered to be a major human health concern across the world. In recent decades, molecular techniques have been applied to examine and identify various bacterial species in fish farms. Molecular techniques are rapid, accurate, sensitive, cost-effective, and have the ability to identify specific pathogens without the need for conventional methods. Furthermore, molecular techniques are particularly useful for the detection of multiple species or in case of low template. This review study aimed to describe various molecular methods, including multiplex-polymerase chain reaction, high-resolution melting real-time, restriction fragment length polymorphism, random amplification of polymorphic DNA, nucleic acid sequence-based amplification, rolling circle amplification, fluorescence in-situ hybridization, microarray, and matrix-assisted laser desorption/ionization. In addition, we evaluated the biosensors used for the detection of zoonotic bacteria, such as Vibrio vulnificus, Vibrio cholerae, Listeria monocytogenes, Streptococcus iniae, Lactococcus garvieae, Aeromonas hydrophila, Edwardsiella tarda, Mycobacterium spp., Photobacterium damselae subsp. Damselae, and Pseudomonas fluorescens, which are transmitted from fish to humans. These bacteria are of great importance in the aquaculture industry and in terms of human health.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Abayneh T, Colquhoun D, Sorum H (2012) Multi-locus sequence analysis (MLSA) of Edwardsiella tarda isolates from fish. Vet Microbiol 158(3):367–375
Al-Fatlawy H, Al-Ammar M (2013) Molecular study of Aeromonas hydrophila isolated from stool samples in Najaf (Iraq). Int J Microbiol Res 5(1):363–369
Aznar R, Ludwig W, Schleifer K-H (1993) Ribotyping and randomly amplified polymorphic DNA analysis of Vibrio vulnificus biotypes. Syst Appl Microbiol 16(2):303–309
Blake PA, Weaver RE, Hollis DG (1980) Diseases of humans (other than cholera) caused by vibrios. Annu Rev Microbiol 34(1):341–367
Bohmer A, Schildgen V, Lusebrink J, Ziegler S, Tillmann RL, Kleines M, Schildgen O (2009) Novel application for isothermal nucleic acid sequence-based amplification (NASBA). J Virol Methods 158(1):199–201
Botella S, Pujalte MJ, Macian MC, Ferrus MA, Hernandez J, Garay E (2002) Amplified fragment length polymorphism (AFLP) and biochemical typing of Photobacterium damselae subsp. damselae. J Appl Microbiol 93(4):681–688
Boylan S (2011) Zoonoses associated with fish. Vet Clin North Am Exot Anim Pract 14(3):427–438
Cantas L, Suer K (2014) The important bacterial zoonoses in “one health” concept. Front Public Health 2:144–201
Chang CI, Wu CC, Cheng TC, Tsai JM, Lin KJ (2009) Multiplex nested-polymerase chain reaction for the simultaneous detection of Aeromonas hydrophila, Edwardsiella tarda, Photobacterium damselae and Streptococcus iniae, four important fish pathogens in subtropical Asia. Aquac Res 40(10):1182–1190
Chatterjee S, Haldar S (2012) Vibrio related diseases in aquaculture and development of rapid and accurate identification methods. J Marine Sci Res Dev S1:002. https://doi.org/10.4172/2155-9910.S1-002
Chiu TH, Kao LY, Chen ML (2013) Antibiotic resistance and molecular typing of Photobacterium damselae subsp. damselae, isolated from seafood. J Appl Microbiol 114(4):1184–1192
Deshmukh RA, Joshi K, Bhand S, Roy U (2016) Recent developments in detection and enumeration of waterborne bacteria: a retrospective minireview. Microbiol Open 5(6):901–922
Dodson S, Maurer J, Shotts E (1999) Biochemical and molecular typing of Streptococcus iniae isolated from fish and human cases. J Fish Dis 22(5):331–336
Fykse EM, Skogan G, Davies W, Olsen JS, Blatny JM (2007) Detection of Vibrio cholerae by real-time nucleic acid sequence-based amplification. Appl Environ Microbiol 73(5):1457–1466
Gauri S, Abidin ZZ, Kamuri MF, Mahdi MA, Md Yunus NA (2017) Detection of Aeromonas hydrophila using fiber optic microchannel sensor. J Sens 2017:1–10. https://doi.org/10.1155/2017/8365189
Gilbride KA, Lee D-Y, Beaudette L (2006) Molecular techniques in wastewater: understanding microbial communities, detecting pathogens, and real-time process control. J Microbiol Methods 66(1):1–20
Gonzalez SF, Krug MJ, Nielsen ME, Santos Y, Call DR (2004) Simultaneous detection of marine fish pathogens by using multiplex PCR and a DNA microarray. J Clin Microbiol 42(4):1414–1419
Haenen O, Evans J, Berthe F (2013) Bacterial infections from aquatic species: potential for and prevention of contact zoonoses. Rev Sci Tech 32(2):497–507
Han HJ, Jung SJ, Oh MJ, Kim DH (2011) Rapid and sensitive detection of Streptococcus iniae by loop-mediated isothermal amplification (LAMP). J Fish Dis 34(5):395–398
Herfehdoost GR, Kamali M, Javadi HR, Zolfagary D, Emamgoli A, Choopani A, Ghasemi B, Hossaini S (2014) Rapid detection of Vibrio Cholerae by polymerase chain reaction based on. J Appl Biotechnol Rep 1(2):59–62
Hong S-R, Choi S-J, Do Jeong H, Hong S (2009) Development of QCM biosensor to detect a marine derived pathogenic bacteria Edwardsiella tarda using a novel immobilisation method. Biosens Bioelectron 24(6):1635–1640
Horenstein S, Smolowitz R, Uhlinger K, Roberts S (2004) Diagnosis of Edwardsiella tarda infection in oyster toadfish (Opsanus tau) held at the marine resources center. Biol Bull 207(2):171–171
Igbinosa IH, Igumbor EU, Aghdasi F, Tom M, Okoh AI (2012) Emerging Aeromonas species infections and their significance in public health. Sci World J 2012:1–13
Jianrong C, Yuqing M, Nongyue H, Xiaohua W, Sijiao L (2004) Nanotechnology and biosensors. Biotechnol Adv 22(7):505–518
Jin D, Luo Y, Zhang Z, Fang W, Ye J, Wu F, Ding G (2012) Rapid molecular identification of Listeria species by use of real-time PCR and high-resolution melting analysis. FEMS Microbiol Lett 330(1):72–80
Jones MK, Oliver JD (2009) Vibrio vulnificus: disease and pathogenesis. Infect Immun 77(5):1723–1733
Jung M, Chang YH, Kim W (2010) A real-time PCR assay for detection and quantification of Lactococcus garvieae. J Appl Microbiol 108(5):1694–1701
Law JW-F, Ab Mutalib N-S, Chan K-G, Lee L-H (2015) Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 5:770–789
Le Monnier A, Abachin E, Beretti J-L, Berche P, Kayal S (2011) Diagnosis of Listeria monocytogenes meningoencephalitis by real-time PCR for the hly gene. J Clin Microbiol 49(11):3917–3923
López JR, Navas JI, Thanantong N, de la Herran R, Sparagano OAE (2012) Simultaneous identification of five marine fish pathogens belonging to the genera Tenacibaculum, Vibrio, Photobacterium and Pseudomonas by reverse line blot hybridization. Aquaculture 324-325:33–38
Maruyama F, Tani K, Kenzaka T, Yamaguchi N, Nasu M (2006) Quantitative determination of free-DNA uptake in river bacteria at the single-cell level by in situ rolling-circle amplification. Appl Environ Microbiol 72(9):6248–6256
Mata A, Gibello A, Casamayor A, Blanco M, Dominguez L, Fernandez-Garayzábal J (2004) Multiplex PCR assay for detection of bacterial pathogens associated with warm-water streptococcosis in fish. Appl Environ Microbiol 70(5):3183–3187
Mehrabadi JF, Morsali P, Nejad HR, Fooladi AAI (2012) Detection of toxigenic Vibrio cholerae with new multiplex PCR. J Infect Public Health 5(3):263–267
Mohanty B, Sahoo P (2007) Edwardsiellosis in fish: a brief review. J Biosci 32(3):1331–1344
Negahdary M, Jafarzadeh M, Rahimzadeh R, Rahimi G, Dehghani H (2017) A DNA biosensor for molecular diagnosis of Aeromonas hydrophila using zinc sulfide nanospheres. J Sens Sens Syst 6(2):259–267
Nguyen T, Lim Y, Kim DH, Austin B (2016) Development of real-time PCR for detection and quantitation of Streptococcus parauberis. J Fish Dis 39(1):31–39
Novotny L, Dvorska L, Lorencova A, Beran V, Pavlik I (2004) Fish: a potential source of bacterial pathogens for human beings. A review. Veterinární Medicína 49(9):343–358
Ootsubo M, Shimizu T, Tanaka R, Sawabe T, Tajima K, Yoshimizu M, Ezura Y, Ezaki T, Oyaizu H (2002) Oligonucleotide probe for detecting Enterobacteriaceae by in situ hybridization. J Appl Microbiol 93(1):60–68
Park SB, Kwon K, Cha IS, Jang HB, Nho SW, Fagutao FF, Kim YK, Yu JE, Jung TS (2014) Development of a multiplex PCR assay to detect Edwardsiella tarda, Streptococcus parauberis, and Streptococcus iniae in olive flounder (Paralichthys olivaceus). J Vet Sci 15(1):163–166
Pate M, Jencic V, Zolnir-Dovc M, Ocepek M (2005) Detection of mycobacteria in aquarium fish in Slovenia by culture and molecular methods. Dis Aquat Org 64(1):29–35
Phung TN, Caruso D, Godreuil S, Keck N, Vallaeys T, Avarre JC (2013) Rapid detection and identification of nontuberculous mycobacterial pathogens in fish by using high-resolution melting analysis. Appl Environ Microbiol 79(24):7837–7845
Pourahmad F, Adams A, Thompson KD, Richards RH (2019) Identification of aquatic mycobacteria based on sequence analysis of the 16S-23S rRNA internal transcribed spacer region. J Med Microbiol 68(2):221–229
Puk K, Banach T, Wawrzyniak A, Adaszek Ł, Ziętek J, Winiarczyk S, Guz L (2018) Detection of Mycobacterium marinum, M. peregrinum, M. fortuitum and M. abscessus in aquarium fish. J Fish Dis 41(1):153–156
Pumera M, Sanchez S, Ichinose I, Tang J (2007) Electrochemical nanobiosensors. Sensors Actuators B Chem 123(2):1195–1205
Rahman M, Heng LY, Futra D, Ling TL (2017) Ultrasensitive biosensor for the detection of Vibrio cholerae DNA with polystyrene-co-acrylic acid composite nanospheres. Nanoscale Res Lett 12(1):474–486
Raissy M (2017) Bacterial zoonotic disease from fish: a review. J Food Microbiol 4(2):15–27
Rajabzadeh N, Naeemipour M, Seyedabadi M (2017) Multiplex PCR assay for the simultaneous detection of bacterial pathogens in rainbow trout. Aquacult Int 25:1569–1575
Ravelo C, Magarinos B, Lopez-Romalde S, Toranzo AE, Romalde JL (2003) Molecular fingerprinting of fish-pathogenic Lactococcus garvieae strains by random amplified polymorphic DNA analysis. J Clin Microbiol 41(2):751–756
Saharan P, Duhan JS, Gahlawat SK (2015) Detection of Pseudomonas fluorescens from broth, water and infected tissues by loop-mediated isothermal amplification (LAMP) method. Afr J Biotechnol 14(14):1181–1185
Salati F, Meloni M, Fenza A, Angelucci G, Colorni A, Orru G (2010) A sensitive FRET probe assay for the selective detection of Mycobacterium marinum in fish. J Fish Dis 33(1):47–56
Savan R, Igarashi A, Matsuoka S, Sakai M (2004) Sensitive and rapid detection of edwardsiellosis in fish by a loop-mediated isothermal amplification method. Appl Environ Microbiol 70(1):621–624
Shi Y-H, Chen J, Li C-H, Lu X-J, Zhang D-M, Li H-Y, Zhao Z-X, Li M-Y (2012) Detection of bacterial pathogens in aquaculture samples by DNA microarray analysis. Aquaculture 338:29–35
Silvester R, Alexander D, Antony AC, Hatha M (2017) GroEL PCR-RFLP–an efficient tool to discriminate closely related pathogenic Vibrio species. Microb Pathog 105:196–200
Tang W, Ranganathan N, Shahrezaei V, Larrouy-Maumus G (2019) MALDI-TOF mass spectrometry on intact bacteria combined with a refined analysis framework allows accurate classification of MSSA and MRSA. PLoS One 14:e0218951. https://doi.org/10.1371/journal.pone.0218951
Terceti MS, Vences A, Matanza XM, Dalsgaard I, Pedersen K, Osorio CR (2018) Molecular epidemiology of Photobacterium damselae subsp. damselae outbreaks in marine rainbow trout farms reveals extensive horizontal gene transfer and high genetic diversity. Front Microbiol 9:2155
Tichoniuk M, Gwiazdowska D, Ligaj M, Filipiak M (2010) Electrochemical detection of foodborne pathogen Aeromonas hydrophila by DNA hybridization biosensor. Biosens Bioelectron 26(4):1618–1623
Trakhna F, Harf-Monteil C, Abdelnour A, Maaroufi A, Gadonna-Widehem P (2009) Rapid Aeromonas hydrophila identification by TaqMan PCR assay: comparison with a phenotypic method. Lett Appl Microbiol 49(2):186–190
Tsai M-A, Wang P-C, Yoshida T, Liaw L-L, Chen S-C (2013) Development of a sensitive and specific LAMP PCR assay for detection of fish pathogen Lactococcus garvieae. Dis Aquat Org 102(3):225–235
Ulrich RM (2004) Development of a sensitive and specific biosensor assay to detect Vibrio vulnificus in estuarine waters. Dissertation, University of South Florida
Vendrell D, Balcázar JL, Ruiz-Zarzuela I, De Blas I, Gironés O, Múzquiz JL (2006) Lactococcus garvieae in fish: a review. Comp Immunol Microbiol Infect Dis 29(4):177–198
Wei S, Zhao H, Xian Y, Hussain MA, Wu X (2014) Multiplex PCR assays for the detection of Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae with an internal amplification control. Diagn Microbiol Infect Dis 79(2):115–118
Woo P, Cain K (2013) Current and emerging diseases/disorders of fish in aquaculture. J Aquac Res Development. https://doi.org/10.4172/2155-9546.S2-e001
Yan L, Zhou J, Zheng Y, Gamson AS, Roembke BT, Nakayama S, Sintim HO (2014) Isothermal amplified detection of DNA and RNA. Mol BioSyst 10(5):970–1003
Zerihun MA, Hjortaas MJ, Falk K, Colquhoun DJ (2011) Immunohistochemical and Taqman real-time PCR detection of mycobacterial infections in fish. J Fish Dis 34(3):235–246
Zhao X, Lin C-W, Wang J, Oh DH (2014) Advances in rapid detection methods for foodborne pathogens. J Microbiol Biotechnol 24(3):297–312
Zhou Q-J, Wang L, Chen J, Wang RN, Shi YH, Li CH, Zhang DM, Yan XJ, Zhang YJ (2014) Development and evaluation of a real-time fluorogenic loop-mediated isothermal amplification assay integrated on a microfluidic disc chip (on-chip LAMP) for rapid and simultaneous detection of ten pathogenic bacteria in aquatic animals. J Microbiol Methods 104:26–35
Zlotkin A, Eldar A, Ghittino C, Bercovier H (1998) Identification of Lactococcus garvieae by PCR. J Clin Microbiol 36(4):983–985
Funding
This research project is financially supported by the Cellular and Molecular Research Center (grant number 95287).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
This article does not involve animal testing by any of the authors.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Farzadnia, A., Naeemipour, M. Molecular techniques for the detection of bacterial zoonotic pathogens in fish and humans. Aquacult Int 28, 309–320 (2020). https://doi.org/10.1007/s10499-019-00462-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10499-019-00462-7
