Skip to main content

Advertisement

Log in

Molecular techniques for the detection of bacterial zoonotic pathogens in fish and humans

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Various diseases could be transmitted from aquatic species, especially fish, to humans, which is considered to be a major human health concern across the world. In recent decades, molecular techniques have been applied to examine and identify various bacterial species in fish farms. Molecular techniques are rapid, accurate, sensitive, cost-effective, and have the ability to identify specific pathogens without the need for conventional methods. Furthermore, molecular techniques are particularly useful for the detection of multiple species or in case of low template. This review study aimed to describe various molecular methods, including multiplex-polymerase chain reaction, high-resolution melting real-time, restriction fragment length polymorphism, random amplification of polymorphic DNA, nucleic acid sequence-based amplification, rolling circle amplification, fluorescence in-situ hybridization, microarray, and matrix-assisted laser desorption/ionization. In addition, we evaluated the biosensors used for the detection of zoonotic bacteria, such as Vibrio vulnificus, Vibrio cholerae, Listeria monocytogenes, Streptococcus iniae, Lactococcus garvieae, Aeromonas hydrophila, Edwardsiella tarda, Mycobacterium spp., Photobacterium damselae subsp. Damselae, and Pseudomonas fluorescens, which are transmitted from fish to humans. These bacteria are of great importance in the aquaculture industry and in terms of human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abayneh T, Colquhoun D, Sorum H (2012) Multi-locus sequence analysis (MLSA) of Edwardsiella tarda isolates from fish. Vet Microbiol 158(3):367–375

    PubMed  CAS  Google Scholar 

  • Al-Fatlawy H, Al-Ammar M (2013) Molecular study of Aeromonas hydrophila isolated from stool samples in Najaf (Iraq). Int J Microbiol Res 5(1):363–369

    CAS  Google Scholar 

  • Aznar R, Ludwig W, Schleifer K-H (1993) Ribotyping and randomly amplified polymorphic DNA analysis of Vibrio vulnificus biotypes. Syst Appl Microbiol 16(2):303–309

    CAS  Google Scholar 

  • Blake PA, Weaver RE, Hollis DG (1980) Diseases of humans (other than cholera) caused by vibrios. Annu Rev Microbiol 34(1):341–367

    PubMed  CAS  Google Scholar 

  • Bohmer A, Schildgen V, Lusebrink J, Ziegler S, Tillmann RL, Kleines M, Schildgen O (2009) Novel application for isothermal nucleic acid sequence-based amplification (NASBA). J Virol Methods 158(1):199–201

    PubMed  Google Scholar 

  • Botella S, Pujalte MJ, Macian MC, Ferrus MA, Hernandez J, Garay E (2002) Amplified fragment length polymorphism (AFLP) and biochemical typing of Photobacterium damselae subsp. damselae. J Appl Microbiol 93(4):681–688

    PubMed  CAS  Google Scholar 

  • Boylan S (2011) Zoonoses associated with fish. Vet Clin North Am Exot Anim Pract 14(3):427–438

    PubMed  Google Scholar 

  • Cantas L, Suer K (2014) The important bacterial zoonoses in “one health” concept. Front Public Health 2:144–201

    PubMed  PubMed Central  Google Scholar 

  • Chang CI, Wu CC, Cheng TC, Tsai JM, Lin KJ (2009) Multiplex nested-polymerase chain reaction for the simultaneous detection of Aeromonas hydrophila, Edwardsiella tarda, Photobacterium damselae and Streptococcus iniae, four important fish pathogens in subtropical Asia. Aquac Res 40(10):1182–1190

    CAS  Google Scholar 

  • Chatterjee S, Haldar S (2012) Vibrio related diseases in aquaculture and development of rapid and accurate identification methods. J Marine Sci Res Dev S1:002. https://doi.org/10.4172/2155-9910.S1-002

    Article  Google Scholar 

  • Chiu TH, Kao LY, Chen ML (2013) Antibiotic resistance and molecular typing of Photobacterium damselae subsp. damselae, isolated from seafood. J Appl Microbiol 114(4):1184–1192

    PubMed  CAS  Google Scholar 

  • Deshmukh RA, Joshi K, Bhand S, Roy U (2016) Recent developments in detection and enumeration of waterborne bacteria: a retrospective minireview. Microbiol Open 5(6):901–922

    Google Scholar 

  • Dodson S, Maurer J, Shotts E (1999) Biochemical and molecular typing of Streptococcus iniae isolated from fish and human cases. J Fish Dis 22(5):331–336

    CAS  Google Scholar 

  • Fykse EM, Skogan G, Davies W, Olsen JS, Blatny JM (2007) Detection of Vibrio cholerae by real-time nucleic acid sequence-based amplification. Appl Environ Microbiol 73(5):1457–1466

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gauri S, Abidin ZZ, Kamuri MF, Mahdi MA, Md Yunus NA (2017) Detection of Aeromonas hydrophila using fiber optic microchannel sensor. J Sens 2017:1–10. https://doi.org/10.1155/2017/8365189

    Article  CAS  Google Scholar 

  • Gilbride KA, Lee D-Y, Beaudette L (2006) Molecular techniques in wastewater: understanding microbial communities, detecting pathogens, and real-time process control. J Microbiol Methods 66(1):1–20

    PubMed  CAS  Google Scholar 

  • Gonzalez SF, Krug MJ, Nielsen ME, Santos Y, Call DR (2004) Simultaneous detection of marine fish pathogens by using multiplex PCR and a DNA microarray. J Clin Microbiol 42(4):1414–1419

    PubMed  PubMed Central  CAS  Google Scholar 

  • Haenen O, Evans J, Berthe F (2013) Bacterial infections from aquatic species: potential for and prevention of contact zoonoses. Rev Sci Tech 32(2):497–507

    PubMed  CAS  Google Scholar 

  • Han HJ, Jung SJ, Oh MJ, Kim DH (2011) Rapid and sensitive detection of Streptococcus iniae by loop-mediated isothermal amplification (LAMP). J Fish Dis 34(5):395–398

    PubMed  CAS  Google Scholar 

  • Herfehdoost GR, Kamali M, Javadi HR, Zolfagary D, Emamgoli A, Choopani A, Ghasemi B, Hossaini S (2014) Rapid detection of Vibrio Cholerae by polymerase chain reaction based on. J Appl Biotechnol Rep 1(2):59–62

  • Hong S-R, Choi S-J, Do Jeong H, Hong S (2009) Development of QCM biosensor to detect a marine derived pathogenic bacteria Edwardsiella tarda using a novel immobilisation method. Biosens Bioelectron 24(6):1635–1640

    PubMed  CAS  Google Scholar 

  • Horenstein S, Smolowitz R, Uhlinger K, Roberts S (2004) Diagnosis of Edwardsiella tarda infection in oyster toadfish (Opsanus tau) held at the marine resources center. Biol Bull 207(2):171–171

    PubMed  Google Scholar 

  • Igbinosa IH, Igumbor EU, Aghdasi F, Tom M, Okoh AI (2012) Emerging Aeromonas species infections and their significance in public health. Sci World J 2012:1–13

    Google Scholar 

  • Jianrong C, Yuqing M, Nongyue H, Xiaohua W, Sijiao L (2004) Nanotechnology and biosensors. Biotechnol Adv 22(7):505–518

    PubMed  Google Scholar 

  • Jin D, Luo Y, Zhang Z, Fang W, Ye J, Wu F, Ding G (2012) Rapid molecular identification of Listeria species by use of real-time PCR and high-resolution melting analysis. FEMS Microbiol Lett 330(1):72–80

    PubMed  CAS  Google Scholar 

  • Jones MK, Oliver JD (2009) Vibrio vulnificus: disease and pathogenesis. Infect Immun 77(5):1723–1733

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jung M, Chang YH, Kim W (2010) A real-time PCR assay for detection and quantification of Lactococcus garvieae. J Appl Microbiol 108(5):1694–1701

    PubMed  CAS  Google Scholar 

  • Law JW-F, Ab Mutalib N-S, Chan K-G, Lee L-H (2015) Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 5:770–789

    PubMed  PubMed Central  Google Scholar 

  • Le Monnier A, Abachin E, Beretti J-L, Berche P, Kayal S (2011) Diagnosis of Listeria monocytogenes meningoencephalitis by real-time PCR for the hly gene. J Clin Microbiol 49(11):3917–3923

    PubMed  PubMed Central  Google Scholar 

  • López JR, Navas JI, Thanantong N, de la Herran R, Sparagano OAE (2012) Simultaneous identification of five marine fish pathogens belonging to the genera Tenacibaculum, Vibrio, Photobacterium and Pseudomonas by reverse line blot hybridization. Aquaculture 324-325:33–38

    Google Scholar 

  • Maruyama F, Tani K, Kenzaka T, Yamaguchi N, Nasu M (2006) Quantitative determination of free-DNA uptake in river bacteria at the single-cell level by in situ rolling-circle amplification. Appl Environ Microbiol 72(9):6248–6256

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mata A, Gibello A, Casamayor A, Blanco M, Dominguez L, Fernandez-Garayzábal J (2004) Multiplex PCR assay for detection of bacterial pathogens associated with warm-water streptococcosis in fish. Appl Environ Microbiol 70(5):3183–3187

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mehrabadi JF, Morsali P, Nejad HR, Fooladi AAI (2012) Detection of toxigenic Vibrio cholerae with new multiplex PCR. J Infect Public Health 5(3):263–267

    PubMed  Google Scholar 

  • Mohanty B, Sahoo P (2007) Edwardsiellosis in fish: a brief review. J Biosci 32(3):1331–1344

    PubMed  CAS  Google Scholar 

  • Negahdary M, Jafarzadeh M, Rahimzadeh R, Rahimi G, Dehghani H (2017) A DNA biosensor for molecular diagnosis of Aeromonas hydrophila using zinc sulfide nanospheres. J Sens Sens Syst 6(2):259–267

    Google Scholar 

  • Nguyen T, Lim Y, Kim DH, Austin B (2016) Development of real-time PCR for detection and quantitation of Streptococcus parauberis. J Fish Dis 39(1):31–39

    PubMed  CAS  Google Scholar 

  • Novotny L, Dvorska L, Lorencova A, Beran V, Pavlik I (2004) Fish: a potential source of bacterial pathogens for human beings. A review. Veterinární Medicína 49(9):343–358

    Google Scholar 

  • Ootsubo M, Shimizu T, Tanaka R, Sawabe T, Tajima K, Yoshimizu M, Ezura Y, Ezaki T, Oyaizu H (2002) Oligonucleotide probe for detecting Enterobacteriaceae by in situ hybridization. J Appl Microbiol 93(1):60–68

    PubMed  CAS  Google Scholar 

  • Park SB, Kwon K, Cha IS, Jang HB, Nho SW, Fagutao FF, Kim YK, Yu JE, Jung TS (2014) Development of a multiplex PCR assay to detect Edwardsiella tarda, Streptococcus parauberis, and Streptococcus iniae in olive flounder (Paralichthys olivaceus). J Vet Sci 15(1):163–166

    PubMed  PubMed Central  Google Scholar 

  • Pate M, Jencic V, Zolnir-Dovc M, Ocepek M (2005) Detection of mycobacteria in aquarium fish in Slovenia by culture and molecular methods. Dis Aquat Org 64(1):29–35

    PubMed  CAS  Google Scholar 

  • Phung TN, Caruso D, Godreuil S, Keck N, Vallaeys T, Avarre JC (2013) Rapid detection and identification of nontuberculous mycobacterial pathogens in fish by using high-resolution melting analysis. Appl Environ Microbiol 79(24):7837–7845

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pourahmad F, Adams A, Thompson KD, Richards RH (2019) Identification of aquatic mycobacteria based on sequence analysis of the 16S-23S rRNA internal transcribed spacer region. J Med Microbiol 68(2):221–229

    PubMed  CAS  Google Scholar 

  • Puk K, Banach T, Wawrzyniak A, Adaszek Ł, Ziętek J, Winiarczyk S, Guz L (2018) Detection of Mycobacterium marinum, M. peregrinum, M. fortuitum and M. abscessus in aquarium fish. J Fish Dis 41(1):153–156

    PubMed  CAS  Google Scholar 

  • Pumera M, Sanchez S, Ichinose I, Tang J (2007) Electrochemical nanobiosensors. Sensors Actuators B Chem 123(2):1195–1205

    CAS  Google Scholar 

  • Rahman M, Heng LY, Futra D, Ling TL (2017) Ultrasensitive biosensor for the detection of Vibrio cholerae DNA with polystyrene-co-acrylic acid composite nanospheres. Nanoscale Res Lett 12(1):474–486

    PubMed  PubMed Central  Google Scholar 

  • Raissy M (2017) Bacterial zoonotic disease from fish: a review. J Food Microbiol 4(2):15–27

    Google Scholar 

  • Rajabzadeh N, Naeemipour M, Seyedabadi M (2017) Multiplex PCR assay for the simultaneous detection of bacterial pathogens in rainbow trout. Aquacult Int 25:1569–1575

    CAS  Google Scholar 

  • Ravelo C, Magarinos B, Lopez-Romalde S, Toranzo AE, Romalde JL (2003) Molecular fingerprinting of fish-pathogenic Lactococcus garvieae strains by random amplified polymorphic DNA analysis. J Clin Microbiol 41(2):751–756

    PubMed  PubMed Central  CAS  Google Scholar 

  • Saharan P, Duhan JS, Gahlawat SK (2015) Detection of Pseudomonas fluorescens from broth, water and infected tissues by loop-mediated isothermal amplification (LAMP) method. Afr J Biotechnol 14(14):1181–1185

    CAS  Google Scholar 

  • Salati F, Meloni M, Fenza A, Angelucci G, Colorni A, Orru G (2010) A sensitive FRET probe assay for the selective detection of Mycobacterium marinum in fish. J Fish Dis 33(1):47–56

    PubMed  CAS  Google Scholar 

  • Savan R, Igarashi A, Matsuoka S, Sakai M (2004) Sensitive and rapid detection of edwardsiellosis in fish by a loop-mediated isothermal amplification method. Appl Environ Microbiol 70(1):621–624

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shi Y-H, Chen J, Li C-H, Lu X-J, Zhang D-M, Li H-Y, Zhao Z-X, Li M-Y (2012) Detection of bacterial pathogens in aquaculture samples by DNA microarray analysis. Aquaculture 338:29–35

    CAS  Google Scholar 

  • Silvester R, Alexander D, Antony AC, Hatha M (2017) GroEL PCR-RFLP–an efficient tool to discriminate closely related pathogenic Vibrio species. Microb Pathog 105:196–200

    PubMed  CAS  Google Scholar 

  • Tang W, Ranganathan N, Shahrezaei V, Larrouy-Maumus G (2019) MALDI-TOF mass spectrometry on intact bacteria combined with a refined analysis framework allows accurate classification of MSSA and MRSA. PLoS One 14:e0218951. https://doi.org/10.1371/journal.pone.0218951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Terceti MS, Vences A, Matanza XM, Dalsgaard I, Pedersen K, Osorio CR (2018) Molecular epidemiology of Photobacterium damselae subsp. damselae outbreaks in marine rainbow trout farms reveals extensive horizontal gene transfer and high genetic diversity. Front Microbiol 9:2155

    PubMed  PubMed Central  Google Scholar 

  • Tichoniuk M, Gwiazdowska D, Ligaj M, Filipiak M (2010) Electrochemical detection of foodborne pathogen Aeromonas hydrophila by DNA hybridization biosensor. Biosens Bioelectron 26(4):1618–1623

    PubMed  CAS  Google Scholar 

  • Trakhna F, Harf-Monteil C, Abdelnour A, Maaroufi A, Gadonna-Widehem P (2009) Rapid Aeromonas hydrophila identification by TaqMan PCR assay: comparison with a phenotypic method. Lett Appl Microbiol 49(2):186–190

    PubMed  CAS  Google Scholar 

  • Tsai M-A, Wang P-C, Yoshida T, Liaw L-L, Chen S-C (2013) Development of a sensitive and specific LAMP PCR assay for detection of fish pathogen Lactococcus garvieae. Dis Aquat Org 102(3):225–235

    PubMed  CAS  Google Scholar 

  • Ulrich RM (2004) Development of a sensitive and specific biosensor assay to detect Vibrio vulnificus in estuarine waters. Dissertation, University of South Florida

  • Vendrell D, Balcázar JL, Ruiz-Zarzuela I, De Blas I, Gironés O, Múzquiz JL (2006) Lactococcus garvieae in fish: a review. Comp Immunol Microbiol Infect Dis 29(4):177–198

    PubMed  Google Scholar 

  • Wei S, Zhao H, Xian Y, Hussain MA, Wu X (2014) Multiplex PCR assays for the detection of Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae with an internal amplification control. Diagn Microbiol Infect Dis 79(2):115–118

    PubMed  CAS  Google Scholar 

  • Woo P, Cain K (2013) Current and emerging diseases/disorders of fish in aquaculture. J Aquac Res Development. https://doi.org/10.4172/2155-9546.S2-e001

  • Yan L, Zhou J, Zheng Y, Gamson AS, Roembke BT, Nakayama S, Sintim HO (2014) Isothermal amplified detection of DNA and RNA. Mol BioSyst 10(5):970–1003

    PubMed  CAS  Google Scholar 

  • Zerihun MA, Hjortaas MJ, Falk K, Colquhoun DJ (2011) Immunohistochemical and Taqman real-time PCR detection of mycobacterial infections in fish. J Fish Dis 34(3):235–246

    PubMed  CAS  Google Scholar 

  • Zhao X, Lin C-W, Wang J, Oh DH (2014) Advances in rapid detection methods for foodborne pathogens. J Microbiol Biotechnol 24(3):297–312

    PubMed  CAS  Google Scholar 

  • Zhou Q-J, Wang L, Chen J, Wang RN, Shi YH, Li CH, Zhang DM, Yan XJ, Zhang YJ (2014) Development and evaluation of a real-time fluorogenic loop-mediated isothermal amplification assay integrated on a microfluidic disc chip (on-chip LAMP) for rapid and simultaneous detection of ten pathogenic bacteria in aquatic animals. J Microbiol Methods 104:26–35

    PubMed  CAS  Google Scholar 

  • Zlotkin A, Eldar A, Ghittino C, Bercovier H (1998) Identification of Lactococcus garvieae by PCR. J Clin Microbiol 36(4):983–985

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This research project is financially supported by the Cellular and Molecular Research Center (grant number 95287).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Naeemipour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not involve animal testing by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzadnia, A., Naeemipour, M. Molecular techniques for the detection of bacterial zoonotic pathogens in fish and humans. Aquacult Int 28, 309–320 (2020). https://doi.org/10.1007/s10499-019-00462-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-019-00462-7

Keywords