Development of denitrification in semi-automated moving bed biofilm reactors operated in a marine recirculating aquaculture system

Abstract

This study examined the performance of three independently operated denitrifying moving bed biofilm reactors (MBBRs) in a zero-exchange marine recirculating aquaculture system (RAS) stocked with European seabass (Dicentrarchus labrax). A semi-automated control strategy was applied to foster spontaneous denitrification. Process automation consisted of a pulsed carbon supply and an inflow of nitrate-rich, aerated process water controlled by the oxidation-reduction potential (ORP) in the MBBR. Carbon dosing frequency was adjusted manually if the process produced unwanted products (i.e., nitrite or ammonia). OPR-controlled inflow stimulated bacterial activities in the MBBRs until inflow reached the pre-set maximum at a hydraulic retention time (HRT) of 0.75 h. This allowed for a quick start-up of the denitrification processes in spite of high initial variability of process water inflow and of nitrate removal efficiency (NRE). A start-up with glycerol did not induce a stable denitrification process; however, after the process had been established with acetate, glycerol promoted efficient denitrification with NRE close to one. The successive application of the two carbon sources resulted in a high nitrate removal rate (NRR) of 2 kg nitrate-N m−3 day−1 in the biofilters. This diminished the concentration of nitrate-nitrogen (nitrate-N) in the RAS (volume 9 m3) from 176 to 36 g m−3 in 42 days with biofilters comprising only 1% of the RAS volume. The implications for the development of an automated denitrification process are discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

HRT:

Hydraulic retention time

MBBR:

Moving bed biofilm reactor

ORP:

Oxidation-reduction potential

NRR:

Nitrate removal rate

NRE:

Nitrate removal efficiency

RAS:

Recirculating aquaculture system

TAN:

Total ammonia-N

References

  1. Badiola M, Mendiola D, Bostock J (2012) Recirculating aquaculture systems (RAS) analysis: main issues on management and future challenges. Aquac Eng 51:26–35. https://doi.org/10.1016/j.aquaeng.2012.07.004

    Article  Google Scholar 

  2. Balderston WL, Sieburth JMN (1976) Nitrate removal in closed-system aquaculture by columnar denitrification. Appl Environ Microbiol 32:808–818

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bodík I, Blstáková A, Sedlácek S, Hutnan M (2009) Biodiesel waste as source of organic carbon for municipal WWTP denitrification. Bioresour Technol 100:2452–2456. https://doi.org/10.1016/j.biortech.2008.11.050

    Article  CAS  PubMed  Google Scholar 

  4. Burgin AJ, Hamilton SK (2007) Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front Ecol Environ 5:89–96. https://doi.org/10.1890/1540-9295(2007)5[89:HWOTRO]2.0.CO,2

    Article  Google Scholar 

  5. Cyplik P, Juzwa W, Marecik R, Powierska-Czarny J, Piotrowska-Cyplik A, Czarny J, Drożdżyńska A, Chrzanowski L (2013) Denitrification of industrial wastewater: influence of glycerol addition on metabolic activity and community shifts in a microbial consortium. Chemosphere 93:2823–2831. https://doi.org/10.1016/j.chemosphere.2013.09.083

    Article  CAS  PubMed  Google Scholar 

  6. Davidson J, Good C, Welsh C, Summerfelt S (2011) The effects of ozone and water exchange rates on water quality and rainbow trout Oncorhynchus mykiss performance in replicated water recirculating systems. Aquac Eng 44:80–96. https://doi.org/10.1016/j.aquaeng.2011.04.001

    Article  Google Scholar 

  7. Davidson J, Good C, Welsh C, Summerfelt ST (2014) Comparing the effects of high vs. low nitrate on the health, performance and welfare of juvenile rainbow trout Oncorhynchus mykiss within water recirculating aquaculture systems. Aquac Eng 59:30–40. https://doi.org/10.1016/j.aquaeng.2014.01.003

    Article  Google Scholar 

  8. FAO (2016) Contributing to food security and nutrition for all. The state of world fisheries and aquaculture 2016. Rome. 200pp.

  9. Ge S, Peng Y, Wang S, Lu CX, Zhu Y (2012) Nitrite accumulation under constant temperature in anoxic denitrification process: the effects of carbon sources and COD/NO(3)-N. Bioresour Technol 114:137–143. https://doi.org/10.1016/j.biortech.2012.03.016

    Article  CAS  PubMed  Google Scholar 

  10. Gutierrez-Wing MT, Malone RF, Rusch KA (2012) Evaluation of polyhydroxybutyrate as a carbon source for recirculating aquaculture water denitrification. Aquacultural Engineering 51:36–43. https://doi.org/10.1016/j.aquaeng.2012.07.002

  11. Hamlin HJ, Michaels JT, Beaulaton CM, Graham WF, Dutt W, Steinbach P, Losordo TM, Schrader KK, Main KL (2008) Comparing denitrification rates and carbon sources in commercial scale upflow denitrification biological filters in aquaculture. Aquac Eng 38:79–92. https://doi.org/10.1016/j.aquaeng.2007.11.003

    Article  Google Scholar 

  12. Han Z, Wu W, Zhu J, Chen Y (2008) Oxidization–reduction potential and pH for optimization of nitrogen removal in a twice-fed sequencing batch reactor treating pig slurry. J Biosyst Eng 99:273–281. https://doi.org/10.1016/j.biosystemseng.2007.09.013

    Article  Google Scholar 

  13. Hardison AK, Algar CK, Giblin AE, Rich JJ (2015) Influence of organic carbon and nitrate loading on partitioning between dissimilatory nitrate reduction to ammonium (DNRA) and N2 production. Geochim Cosmochim Acta 164:146–160. https://doi.org/10.1016/j.gca.2015.04.049

    Article  CAS  Google Scholar 

  14. He Q, Zhang D, Main K, Feng C, Ergas SJ (2018) Biological denitrification in marine aquaculture systems: a multiple electron donor microcosm study. Bioresour Technol 263:340–349. https://doi.org/10.1016/j.biortech.2018.05.018

    Article  CAS  PubMed  Google Scholar 

  15. Kiemer MCB, Black KD, Lussot D, Bullock AM, Ezzi I (1995) The effects of chronic and acute exposure to hydrogen sulphide on Atlantic salmon (Salmo salar L.). Aquacult 135:311–327. https://doi.org/10.1016/0044-8486(95)01025-4

    Article  CAS  Google Scholar 

  16. Kraft B, Tegetmeyer HE, Sharma R, Klotz MG, Ferdelman TG, Hettich RL, Geelhoed JS, Strous M (2014) Nitrogen cycling. The environmental controls that govern the end product of bacterial nitrate respiration. Science (New York, NY) 345:676–679. https://doi.org/10.1126/science.1254070

    Article  CAS  Google Scholar 

  17. Lee NM, Welander T (1996) The effect of different carbon sources on respiratory denitrification in biological wastewater treatment. J Ferment Bioeng 82:277–285. https://doi.org/10.1016/0922-338X(96)88820-9

    Article  CAS  Google Scholar 

  18. Lee PG, Lea RN, Dohmann E, Prebilsky W, Turk PE, Ying H, Whitson JL (2000) Denitrification in aquaculture systems: an example of a fuzzy logic control problem. Aquac Eng 23:37–59. https://doi.org/10.1016/S0144-8609(00)00046-7

    Article  Google Scholar 

  19. Lewis WM, Morris DP (1986) Toxicity of nitrite to fish: a review. Trans Am Fish Soc 115:183–195. https://doi.org/10.1577/1548-8659(1986)115<183:TONTF>2.0.CO,2

    Article  CAS  Google Scholar 

  20. Li B, Irvin S (2007) The comparison of alkalinity and ORP as indicators for nitrification and denitrification in a sequencing batch reactor (SBR). Biochem Eng J 34:248–255. https://doi.org/10.1016/j.bej.2006.12.020

    Article  CAS  Google Scholar 

  21. Li X, Blancheton JP, Liu Y, Triplet S, Michaud L (2014) Effect of oxidation-reduction potential on performance of European sea bass (Dicentrarchus labrax) in recirculating aquaculture systems. Aquacult Int 22:1263–1282. https://doi.org/10.1007/s10499-013-9745-3 

    Article  CAS  Google Scholar 

  22. Lu H, Chandran K, Stensel D (2014) Microbial ecology of denitrification in biological wastewater treatment. Water Res 64:237–254. https://doi.org/10.1016/j.watres.2014.06.042

    Article  CAS  PubMed  Google Scholar 

  23. Luccarini L, Pulcini D, Sottara D, Di Cosmo R, Canziani R (2017) Monitoring denitrification by means of pH and ORP in continuous-flow conventional activated sludge processes. Des Water Treat 61:319–325 DWt 61:319–325. https://doi.org/10.5004/dwt.2017.11119

    CAS  Article  Google Scholar 

  24. Lupatsch I, Kissil GW, Sklan D (2001) Optimization of feeding regimes for European sea bass Dicentrarchus labrax: a factorial approach. Aquacult 202:289–302. https://doi.org/10.1016/S0044-8486(01)00779-7

    Article  Google Scholar 

  25. Lupatsch I, Santos GA, Schrama JW, Verreth JAJ (2010) Effect of stocking density and feeding level on energy expenditure and stress responsiveness in European sea bass Dicentrarchus labrax: a factorial approach. Aquacult 298:245–250

    Article  Google Scholar 

  26. Martins CIM, Eding EH, Verdegem MCJ, Heinsbroek LTN, Schneider O, Blancheton JP, d'Orbcastel R, Verreth JAJ (2010) New developments in recirculating aquaculture systems in Europe: a perspective on environmental sustainability. Aquac Eng 43:83–93. https://doi.org/10.1016/j.aquaeng.2010.09.002

    Article  Google Scholar 

  27. Mota VC, Nilsen TO, Gerwins J, Gallo M, Ytteborg E, Baeverfjord G, Kolarevic J, Summerfelt ST, Terjesen BF (2019) The effects of carbon dioxide on growth performance welfare and health of Atlantic salmon post-smolt (Salmo salar) in recirculating aquaculture systems. Aquacult 498:578–586. https://doi.org/10.1016/j.aquaculture.2018.08.075

    Article  CAS  Google Scholar 

  28. Moussavi G, Jafari SJ, Yaghmaeian K (2015) Enhanced biological denitrification in the cyclic rotating bed reactor with catechol as carbon source. Bioresour Technol 189:266–272. https://doi.org/10.1016/j.biortech.2015.04.019

    Article  CAS  PubMed  Google Scholar 

  29. Müller-Belecke A, Zienert S, Thürmer C, Kaufhold S, Spranger U (2013) The “self cleaning inherent gas denitrification-reactor” for nitrate elimination in RAS for pike perch (Sander lucioperca) production. Aquac Eng 57:18–23. https://doi.org/10.1016/j.aquaeng.2013.06.001

    Article  Google Scholar 

  30. Oh J, Silverstein JA (1999) Acetate limitation and nitrite accumulation during denitrification. J Environ Eng 125:234–242. https://doi.org/10.1061/(ASCE)0733-9372(1999)125:3(234)

    Article  CAS  Google Scholar 

  31. Orellana J, Waller U, Wecker B (2014) Culture of yellowtail kingfish (Seriola lalandi) in a marine recirculating aquaculture system (RAS) with artificial seawater. Aquac Eng 58:20–28. https://doi.org/10.1016/j.aquaeng.2013.09.004

    Article  Google Scholar 

  32. Park JY, Yoo YJ (2009) Biological nitrate removal in industrial wastewater treatment: which electron donor we can choose. Appl Microbiol Biotechnol 82:415–429. https://doi.org/10.1007/s00253-008-1799-1

    Article  CAS  PubMed  Google Scholar 

  33. Pham VP, Nakano A, van der Star WRL, Heimovaara TJ, van Paassen LA (2018) Applying MICP by denitrification in soils: a process analysis. Environ Geotech 5:79–93. https://doi.org/10.1680/jenge.15.00078

    Article  Google Scholar 

  34. Quispe CAG, Coronado CJR, Carvalho JA Jr (2013) Glycerol: production consumption prices characterization and new trends in combustion. Renew Sust Energ Rev 27:475–493. https://doi.org/10.1016/j.rser.2013.06.017

    Article  CAS  Google Scholar 

  35. Randall DJ, Tsui TKN (2002) Ammonia toxicity in fish. Mar Pollut Bull 45:17–23

    Article  CAS  PubMed  Google Scholar 

  36. Robiana L, Corraze G, Aguirre P, Banc D, Melcion JP, Kaushik S (1999) Digestibility, postprandial ammonia excretion and selected plasma metabolites in European sea bass (Dicentrarchus labrax) fed pelleted or extruded diets with or without wheat gluten. Aquacult 179:45–56

    Article  Google Scholar 

  37. Sauthier N, Grasmick A, Blancheton JP (1998) Biological denitrification applied to a marine closed aquaculture system. Water Res 32:1932–1938. https://doi.org/10.1016/S0043-1354(97)00406-5

    Article  CAS  Google Scholar 

  38. Siikavuopio SI, Sæther BS (2006) Effects of chronic nitrite exposure on growth in juvenile Atlantic cod Gadus morhua. Aquacult 255:351–356. https://doi.org/10.1016/j.aquaculture.2005.11.058

    Article  CAS  Google Scholar 

  39. Strohm TO, Griffin B, Zumft WG, Schink B (2007) Growth yields in bacterial denitrification and nitrate ammonification. Appl Environ Microbiol 73:1420–1424. https://doi.org/10.1128/AEM.02508-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Timmons MB, Ebeling JM (2010) Recirculating Aquaculture. NRAC Publication No 401-2010. Cayuga Aqua Ventures, Ithaca NY

  42. Torno J, Naas C, Schroeder JP, Schulz C (2018) Impact of hydraulic retention time backflushing intervals and C/N ratio on the SID-reactor denitrification performance in marine RAS. Aquacult 496:112–122. https://doi.org/10.1016/j.aquaculture.2018.07.004

    Article  CAS  Google Scholar 

  43. Torrans EL, Clemens HP (1982) Physiological and biochemical effects of acute exposure of fish to hydrogen sulfide. Comp Biochem Physiol C: Comp phar 71:183–190

    Article  CAS  Google Scholar 

  44. van Bussel CGJ, Schroeder JP, Wuertz S, Schulz C (2012) The chronic effect of nitrate on production performance and health status of juvenile turbot (Psetta maxima). Aquacult 326:163–167. https://doi.org/10.1016/j.aquaculture.2011.11.019

    Article  CAS  Google Scholar 

  45. van den Berg EM, Rombouts JL, Kuenen JG, Kleerebezem R, van Loosdrecht MCM (2017) Role of nitrite in the competition between denitrification and DNRA in a chemostat enrichment culture. AMB Express 7:91. https://doi.org/10.1186/s13568-017-0398-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Viana MB, Freitas AV, Leitão RC, Pinto GAS, Santaella ST (2012) Anaerobic digestion of crude glycerol: a review. Environ Technol Rev 1:81–92. https://doi.org/10.1080/09593330.2012.692723

    Article  CAS  Google Scholar 

  47. Waller U (2001) Tank culture and recirculating systems. Kenneth D Black (Hg.): Environmental impacts of aquaculture. Sheffield Academy Press (Sheffield biological sciences), Sheffield, pp 99–127

    Google Scholar 

  48. Waller U, Orellana J, Sander M (2007) The control of water quality and hygienic conditions in aquaculture recirculation systems (RAS): the use of foam fractionation and ozone. Proceedings of the IOA/IUVA Joint World Congress on Ozone and Ultraviolet Technologies. Los Angeles USA pp. 1916–1936

  49. Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69:12–50. https://doi.org/10.1128/MMBR.69.1.12-50.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang X, Wang S, Zhou L (2012) Effect of carbon source C/N ratio nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by Pseudomonas stutzeri D6. Bioresour Technol 104:65–72. https://doi.org/10.1016/j.biortech.2011.10.026

    Article  CAS  PubMed  Google Scholar 

  51. Yilmaz H, Corraze G, Panserat S, Eroldogan OT (2016) Effects of alternate feeding with different lipid sources on fatty acid composition and bioconversion in European sea bass (Dicentrarchus labrax). Aquacul 464:28–23

    Article  CAS  Google Scholar 

  52. Zhu T, Dittrich M (2016) Carbonate precipitation through microbial activities in natural environment and their potential in biotechnology: a review. Front Bioeng Biotechnol 4. https://doi.org/10.3389/fbioe.2016.00004

  53. Zhu SM, Deng YL, Ruan YJ, Guo XS, Shi MM, Shen JZ (2015) Biological denitrification using poly(butylene succinate) as carbon source and biofilm carrier for recirculating aquaculture system effluent treatment. Bioresour Technol 192:603–610. https://doi.org/10.1016/j.biortech.2015.06.021

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was a part of the project “Modellbasierte innovative Regelungsstrategien für biologische Prozesse der Lebensmittelindustrie (MARE)” funded by the BMBF-Support program for young engineers 2013 (AZ: 13FH004I3) and the project "Microbial Stabilization Technologies (MicStaTech)" funded by the COFASP ERA-NET partners, who received funding from the European Union’s Seventh Framework Programme for research, technological development, and demonstration under grant agreement no. 321553. O.S.-Z. was supported by an ERASMUS grant to pursue his master degree at the htw saar.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anneliese Ernst.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors have an official permit to raise fish. This article does not contain any experiments with animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stavrakidis-Zachou, O., Ernst, A., Steinbach, C. et al. Development of denitrification in semi-automated moving bed biofilm reactors operated in a marine recirculating aquaculture system. Aquacult Int 27, 1485–1501 (2019). https://doi.org/10.1007/s10499-019-00402-5

Download citation

Keywords

  • Denitrification
  • MBBR
  • Moving bed biofilm reactor
  • Nitrate removal
  • ORP control
  • RAS
  • Recirculating aquaculture system