Skip to main content
Log in

Antimicrobial activities of chitosan nanoparticles against pathogenic microorganisms in Nile tilapia, Oreochromis niloticus

Aquaculture International Aims and scope Submit manuscript

Abstract

Nanotechnology is a recent unique technique generally used for nutrition and therapy purposes among others. In this respect, the present study was carried out to evaluate the antimicrobial activity of chitosan nanoparticles (CNP) against various microorganisms (fungi and bacteria) isolated from diseased or health Nile tilapia, Oreochromis niloticus. The CNP was prepared based on the ionic gelation of chitosan with tripolyphosphate anion and its mean size was 35 nm with a narrow size distribution and zeta potential of 61.2 mV. The lethal dose of pathogenic bacterial isolates for Nile tilapia was successfully standardized. Clinical signs including weakness, slower movement, swimming closer to the surface, fin hemorrhages, and red patches at the gut regions were observed. Enlargement of spleen followed by tissue necrosis along with signs of hemorrhagic septicemia was also seen in infected fish. Fungal and bacterial isolates were exposed to different CNP doses and it is noticed that CNP inhibited all examined fungal and bacterial isolates in a dose-dependent manner. However, high CNP doses (80 μg/ml) gave highest inhibition zones where Aspergillus flavus, Mucor sp., and Candida sp. were more susceptible, whereas Aspergillus niger, A. fumigatus, and Fusarium sp. were more resistant. Similarly, largest inhibition zones of tested bacteria were obtained at high CNP dose (20 μg/ml). And Aeromonas sobria, A. hydrophila, and Pseudomonas aeruginosa were the most susceptible bacterial strain; meanwhile, Staphylococcus aureus and Pseudomonas fluorescens were the most resistant ones. The minimal inhibitory concentration of CNP against the examined bacteria ranged from 0.156 to 2.5 μg/ml causing their minimal counts. The transmission electron microscope images revealed that CNP showed antagonistic action against A. hydrophila causing disruption of cell membranes and the leakage of cytoplasm. In a practical experiment, Nile tilapia fed dietary CNP at levels of 0.0 and 1.0 g/kg diet for 3 weeks and post-challenged with different pathogenic bacteria via intraperitoneal injection. It is noticed that fish fed a CNP-enriched diet showed less mortality with all bacterial strains (6.7–20%), while, fish fed a CNP-free diet showed highest mortality (66.7–100%). The dietary CNP protected Nile tilapia efficiently against A. hydrophila, A. sobria, and Streptococcus agalactiae infections with relative level of protection (RLP) value of 93.3%, while the RLP against Staphylococcus aureus was 70.0%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abdel-Ghany HM, Salem ME-S (2019) Effects of dietary chitosan supplementation on farmed fish; a review. Rev Aquac. https://doi.org/10.1111/raq.12326

  • Abdel-Tawwab M, Abdel Razek N, Abdel-Rahman AM (2019) Immunostimulatory effect of dietary chitosan nanoparticles on growth performance of Nile tilapia, Oreochromis niloticus (L.). Fish Shellfish Immunol 88:254–258

    Article  CAS  PubMed  Google Scholar 

  • Akmaz S, Adjgüzel ED, Yasar M, Erguven O (2013) The effect of Ag content of the chitosan-silver nanoparticle composite material on the structure and antibacterial activity. Adv Mater Sci Eng. https://doi.org/10.1155/2013/690918

  • Allan CR, Hardwiger LA (1979) The fungicidal effect of chitosan on fungi of varying cell wall composition. Exp Mycol 3:285–287

    Article  CAS  Google Scholar 

  • Amer MSMI (2002) Antimicrobial activity of some species of blue green algae (Cyanobacteria). M.Sc., Botany Dep., Fac. Sci., Tanta Univ, Egypt.

  • Avadi MR, Sadeghi AMM, Tahzibi A, Bayati KH, Pouladzadeh M, Zohuriaan-Mehr MJ, Rafiee (2004) Optimized synthesis and characterization of N-Triethyl chitosan Tehrani, M. Eur Polym J 40: 1355–1361.

  • Bauer AW, Kirby WM, Sherris JC, Turk M (1966) Antibiotic susceptibility by a standardized single disk method. Amer J Clin Pathol 45:493–496

    Article  CAS  Google Scholar 

  • Benhabiles MS, Salah R, Lounici H, Drouiche N, Goosen MFA, Mameri N (2012) Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll 29:48–56

    Article  CAS  Google Scholar 

  • Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dölz H, Millanao A et al (2013) Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol 15:1917–1942

    Article  PubMed  Google Scholar 

  • Cabello FC, Godfrey HP, Buschmann AH, Dölz HJ (2016) Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. Lancet Infect Dis 16:127–133

    Article  Google Scholar 

  • Cha S, Lee J, Song C, Lee K, Jeon Y (2008) Effects of chitosan coated diet on improving water quality and innate immunity in the olive flounder (Paralithchys olivaceus). Aquaculture 278:110–118

    Article  CAS  Google Scholar 

  • Chen CZS, Cooper SL (2002) Interactions between dendrimerbiocides and bacterial membranes. Biomaterials 23:3359–3368

    Article  CAS  PubMed  Google Scholar 

  • Du L, Liu W (2012) Occurance, fat, and ecotoxicity of antibiotics in agro-ecosystem. A review. Agron Sustain Dev 32:309–327

    Article  CAS  Google Scholar 

  • El-Sayed HS, Barakat KM (2016) Effect of dietary chitosan on challenged Dicentrarchus labrax post larvae with Aeromonas hydrophila. Russ J Mar Biol 42:501–508

    Article  CAS  Google Scholar 

  • Eweis M, Elkholy SS, Elsabee MZ (2006) Antifungal efficacy of chitosan and its thiourea derivatives upon the growth of some sugar-beet pathogens. Int J Biol Macromol 38:1–8

    Article  CAS  PubMed  Google Scholar 

  • Florio D, Gustinelli A, Caوٴara M, Turci F, Quaglio F et al (2009) Veterinary and public health aspects in tilapia (Oreochromis niloticus) aquaculture in Kenya, Uganda and Ethiopia. Ittiopatologia 6:51–93

    Google Scholar 

  • Gopalakannan A, Arul V (2006) Immunomodulatory effects of dietary intake of chitin, chitosan and levamisole on the immune system of Cyprinus carpio and control of Aeromonas hydrophila infection in ponds. Aquaculture 255:179–187

    Article  CAS  Google Scholar 

  • Goy RC, Britto D, Assis OG (2009) A review of the antimicrobial activity of chitosan. Polimeros 19:241–247

    Article  CAS  Google Scholar 

  • Guo Z, Ren J, Dong F, Wang G, Li P (2013) Comparative study of the influence of active groups of chitosan derivatives on antifungal activity. J Appl Polym Sci 127:2553–2556

    Article  CAS  Google Scholar 

  • Hadwiger LA, Kendra DG, Fristensky BW, Wagoner W (1981) Chitin in nature and technology. In: Muzzarelli RAA, Jeuniaux C, Gooday GW (eds) Chitosan both activated genes in plants and inhibits RNA synthesis in fungi. Plenum, New York, p 584

    Google Scholar 

  • Harikrishnan R, Kim JS, Balasundaram C, Heo MS (2012) Immunomodulatory effects of chitin and chitosan enriched diets in Epinephelus bruneus against Vibrio alginolyticus infection. Aquaculture 326–329:46–52

    Article  CAS  Google Scholar 

  • Helander IM, Nurmiaho-Lassila E-L, Ahvenainen R, Rhoades J, Roller S (2001) Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int J Food Microbiol 71:235–244

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Lauzardo AN, Bautista-Banos S, Velazquez-del Valle MG, Mendez-Montealvo MG, Sanchez-Rivera MM, Bello-Perez LA (2008) Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. Carbohydr Polym 73:541–547

    Article  CAS  PubMed  Google Scholar 

  • Iqbal Z, Saleemi S (2013) Isolation of pathogenic fungi from a freshwater commercial fish Catla catla. Sci Int 25:851–855

    Google Scholar 

  • Jeon YJ, Park PJ, Kim SK (2001) Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydr Polym 44:71–76

    Article  CAS  Google Scholar 

  • Kaplan SL, Assaâd Silaa B, Baha Eddine A, Rihab BA, Semia EC, Ali B, Rafik B (2016) Chitin and chitosan from the Norway lobster by-products: antimicrobial and anti-proliferative activities. Int eJ Biological Macromolecules 47:341–345

    Google Scholar 

  • Kinner NE, Balkwill DL, Bishop PL (1983) Light and electron microscopic studies of microorganisms growing in rotating biological contactor bio films. Appl Environ Microbiol 45(5):1659–1669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong M, Chen XG, Liu CS, Liu CG, Meng XH, Yu LJ (2008) Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E.coli. Colloids Surf B: Biointerfaces 65:197–202

    Article  CAS  PubMed  Google Scholar 

  • Lam TD, Hoang VD, Lien LN, Thinh NN, Dien PG (2006) Synthesis and characterization of chitosan nanoparticles used as drug. J Chem 44:105–109

    Google Scholar 

  • Larone DH (1987) Medically important fungi: a guide to identification. American Society for Microbiology, Medical, pp 230

  • Lo G, Higueras L, Gavara R, Herna P (2013) Silver ions release from antibacterial chitosan films containing in situgene rated silver nanoparticles. J Agric Food Chem 61:260 267

    Article  CAS  Google Scholar 

  • Martin MV (1979) Germ tube formation by oral strains of Candida albicans. J Med Microbiol 12:187–193

    Article  CAS  PubMed  Google Scholar 

  • Másson M, Holappa J, Hjalmarsdottir MR, Unarsson OV, Nevalainen T, Jarvinen T (2008) Antimicrobial activity of piperazine derivatives of chitosan. Carbohydrate Polymers 74: 566–571

  • Melaku H, Lakew M, Alemayehu E, Wubie A, Chane M (2017) Isolation and identification of pathogenic fungus from African catfish (Clarias gariepinus) eggs and adults in national fishery and aquatic life research center hatchery, Ethiopia. Fish Aqua J 8:213. https://doi.org/10.4172/2150-3508.1000213

    Article  Google Scholar 

  • Miller LC, Tainter ML (1944) Estimation of LD50 and its error by means of log probit graph paper. Proc Soc Exp Biol Med 57:261

    Article  CAS  Google Scholar 

  • Mohy-Eldin SM, Soliman EA, Hashem AI, Tamer TM (2008) Antibacterial activity of chitosan chemically modified with new technique. Trends Biomater Atrif Organs 22:121–133

    Google Scholar 

  • Moussa S, Ibrahim A, Okba A, Hamza H, Opwis K, Schollmeyer E (2011) Anticandidal action of fungal chitosan against Candida albicans. Int J Biol Macromol 48:736–741

    Article  CAS  PubMed  Google Scholar 

  • Muktar Y, Tesfaye S, Tesfaye B (2016) Present status and future prospects of fish vaccination: a review. J Veterinar Sci Technol 7:2

    Article  CAS  Google Scholar 

  • Nester E W, Anderson D G, Roberts E, Pearshall, N N, Nester M T (2004) Microbiology a human prospect. Published by Boston McGraw-Hill 2e004 https://trove.nla.gov.au/version/49174664. Accessed 30 July 2004

  • Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55(3):329–347

    Article  CAS  PubMed  Google Scholar 

  • Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700

    Article  CAS  PubMed  Google Scholar 

  • Refai M (1987) Isolation and identification of fungi. Fac. Vet. Mid., Cairo University, Cairo, Egypt

  • Refai M, Abdel Halim MM, Afify MMH, Youssef H, Marzouk M (1987) Studies on aspergillomycosis in catfish (Clarias lasera). Allgemeine Pathologic and pathologische Anatomic. Tagung der Deutachen Veterinar—Medizinischen Gesellschaft. der Europeischen Gesellschaft fur Vet. Pathol. 63: 1–12

  • Refai MK, Laila AM, Amany KM, Shimaa E-SMA (2010) The assessment of mycotic settlement of freshwater fishes in Egypt. J Am Sci 6(11):594–602

    Google Scholar 

  • Sarbon NM, Sandanamsamy S, Kamaruzaman SFS, Ahmad F (2015) Chitosan extracted from mud crab (Scylla olivicea) shells: physicochemical and antioxidant properties. J Food Sci Technol 52:4266–4275

    Article  CAS  PubMed  Google Scholar 

  • Schnurch B (2000) Chitosan and its derivatives: potential excipients for peroral peptide delivery systems. Int J Pharm 194:1–13

    Article  Google Scholar 

  • Shaalan M, Saleh M, El-Mahdy M, El-Matbouli M (2016) Recent progress in applications of nanoparticles in fish medicine. Nanomedicine 12:701–710

    Article  CAS  PubMed  Google Scholar 

  • Shaheen, AA (1986) Mycoflora of some freshwater fish. M.V.Sc. Thesis, Fac. Vet. Med., Zagazic Univ, Zagazig, Egypt

  • Shahidi F, Arachchi JKV, Jeon YJ (1999) Chitosan modification and pharmaceutical/biomedical applications. Trends Food Sci Technol 10:37–51

    Article  CAS  Google Scholar 

  • Song C, Yu H, Zhang M, Yang Y, Zhang G (2013) Physicochemical properties and antioxidant activity of chitosan from the blowfly Chrysomya megacephala larvae. Int J Biol Macromol 60:347–354

    Article  CAS  PubMed  Google Scholar 

  • Srivastava RC (2009) Fish mycopathology. Today and Tomorrow’s Printers and Publishers, New Dehli, p 103

    Google Scholar 

  • Stossel P, Leuba JL (1984) Effect of chitosan, chitin and some amino-sugars on growth of various soil borne phytopathogenic fungi. Phytopathology Z 111:82–90

    Article  Google Scholar 

  • Sudarshan NR, Hoover DG, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6:257–272

    Article  CAS  Google Scholar 

  • Tang ESK, Huang M, Lim LY (2003) Ultrasonication of chitosan and chitosan nanoparticles. Intern J Pharm 265:103–114

    Article  CAS  Google Scholar 

  • Vinagradov SV, Bronich TK, Kabanov AV (2002) Nano-sized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 54:223–233

    Article  Google Scholar 

  • Wang SH, Chen JC (2005) The protective effect of chitin and chitosan against Vibrio alginolyticus in white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 19:191–204

    Article  CAS  PubMed  Google Scholar 

  • Yaghobi N, Hormozi F (2010) Multistage deacetylation of chitin: kinetics study. Carbohydr Polym 81:892–896

    Article  CAS  Google Scholar 

  • Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources: structure, properties and applications. Mar Drugs 13:1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Younes I, Sellimi S, Rinaudo M, Jellouli K, Nasri M (2014) Influence of acetylation degree and molecular weight of homogeneous chitosan on antibacterial and antifungal activities. Intern J Food Microbiol 185:57–63

    Article  CAS  Google Scholar 

  • Zhang W, Zhang J, Jiang Q, Xia W (2012) Physicochemical and structural characteristics of chitosan nanopowders prepared by ultrafine milling. Carbohydr Polym 87:309–313

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded and supported by the Central Laboratory for Aquaculture Research (CLAR), Abbassa, Abu-Hammad, Sharkia, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nashwa Abdel-Razek.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Ethical approval

The author declares that she followed all guidelines for the care and use of fish in the present study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Razek, N. Antimicrobial activities of chitosan nanoparticles against pathogenic microorganisms in Nile tilapia, Oreochromis niloticus. Aquacult Int 27, 1315–1330 (2019). https://doi.org/10.1007/s10499-019-00388-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-019-00388-0

Keywords

Navigation