Skip to main content

Advertisement

Log in

Carbon and nitrogen accumulation and interspecific competition in two algae species, Pyropia haitanensis and Ulva lactuca, under ocean acidification conditions

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

If the atmospheric CO2 continues to increase as predicted, Pyropia haitanensis would experience the coupled effects of ocean acidification (OA) and interference from the epiphyte alga Ulva lactuca. In the current study, we evaluated the carbon (C) and nitrogen (N) accumulation in P. haitanensis and U. lactuca under OA conditions, as well as the interspecific competition between these two algae. We found that, under mono-culture conditions, OA significantly enhanced the growth of both P. haitanensis and U. lactuca and markedly increased the soluble carbohydrate (SC) content and C/N ratios in P. haitanensis, but reduced its soluble proteins (SP) content. In U. lactuca, OA reduced its SP content, but increased C/N ratios, while its SC content was not significantly affected. Under biculture conditions, the rapid growth of U. lactuca and its comparatively more efficient use of nutrients resulted in insufficient available N sources for P. haitanensis. Biculture with U. lactuca increased SC but declined SP content. This also resulted in some membrane injuries that were indicated by increased malondialdehyde (MDA) content and depressed growth in P. haitanensis. Biculture with U. lactuca was disadvantageous for carbon and nitrogen accumulation in P. haitanensis. The results demonstrated that under conditions of OA, the negative effects caused by the epiphyte U. lactuca were more pronounced. If the CO2 levels rise as predicted, Ulva algae would severely interfere with maricultivation of P. haitanensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson RJ, Monteiro PMS, Graham JL (1996) The effect of localised eutrophication on competition between Ulva lactuca (Ulvaceae, Chlorophyta) and a commercial resource of Gracilaria verrucosa (Gracilaria Cease, Rhodophyta). Hydrobiologia 326(327):291–296

    Article  Google Scholar 

  • Andria JR, Vergara JJ, Perez-Llorens JL (1999) Biochemical responses and photosynthetic performance of Gracilaria sp. (Rhodophyta) from Cádiz, Spain, cultured under different inorganic carbon and nitrogen levels. Eur J Phycol 34:497–504

    Article  Google Scholar 

  • Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Cai WJ, Hu X, Huang WJ, Murrell MC, Lehrter JC, Lohrenz SE, Chou WC, Zhai W, Hollibaugh JT, Wang Y (2011) Acidification of subsurface coastal waters enhanced by eutrophication. Nat Geosci 4:766–770

    Article  CAS  Google Scholar 

  • Chen F, Johns MR (1991) Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J Appl Phycol 3:203–209

    Article  CAS  Google Scholar 

  • Chen B, Zou D (2015) Altered seawater salinity levels affected growth and photosynthesis of Ulva fasciata (Ulvales, Chlorophyta) germlings. Acta Oceanol Sin 34(8):108–113

    Article  CAS  Google Scholar 

  • Chen B, Ma J, Cai Y, Sun B, Gao S, Hu X, Yang J (2013) Morphological and molecular analysis of attached Ulva L. green algae from Porphyra rafts from Rudong coasts in Jiangsu Province. Mar Environ Sci 32:394–397 (In Chinese with English abstract)

    Google Scholar 

  • Chen B, Zou D, Jiang H (2015) Elevated CO2 exacerbates competition for growth and photosynthesis between Gracilaria lemaneiformis and Ulva lactuca. Aquaculture 443:49–55

    Article  CAS  Google Scholar 

  • Chen B, Zou D, Ma J (2016) Interactive effects of elevated CO2 and nitrogen- phosphorus supply on the physiological properties of Pyropia haitanensis (Bangiales, Rhodophyta). J Appl Phycol 28(2):1235–1243

    Article  CAS  Google Scholar 

  • Chen B, Zou D, Yang Y (2017a) Increased iron availability resulting from increased CO2 enhances carbon and nitrogen metabolism in the economical marine red macroalga Pyropia haitanensis (Rhodophyta). Chemosphere 173:444–451

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Zou D, Zhu M (2017b) Growth and photosynthetic responses of Ulva lactuca L. (Ulvales, Chlorophyta) germlings to different pH levels. Mar Biol Res 13(3):351–357

    Article  Google Scholar 

  • Cornwall CE, Hepburn CD, Pritchard D, Currie KI, McGraw CM, Hunter KA, Hurd CL (2012) Carbon-use strategies in macroalgae: differential responses to lowered pH and implications for ocean acidification. J Phycol 48:137–144

    Article  CAS  PubMed  Google Scholar 

  • Drechsler Z, Beer S (1991) Utilization of inorganic carbon by Ulva lactuca. Plant Physiol 97:1439–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabricius KE, Kluibenschedl A, Harrington L, Noonan S, De'ath G (2015) In situ changes of tropical crustose coralline algae along carbon dioxide gradients. Sci Rep 5:9537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei X (2004) Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia 512(1–3):145–151

    Article  Google Scholar 

  • Fong P, Zedler JB, Donohoe RM (1993a) Nitrogen versus phosphorous limitation of algal biomass in shallow coastal lagoons. Limnol Oceanogr 38:906–923

    Article  Google Scholar 

  • Fong P, Donohoe RM, Zedler JB (1993b) Competition with macroalgae and benthic cyanobacterial limits phytoplankton abundance in experimental microcosms. Mar Ecol Prog Ser 100:97–102

    Article  Google Scholar 

  • Friedlander M (1992) Gracilaria conferta and its epiphytes: the effect of culture conditions on growth. Bot Mar 35:423–428

    Article  Google Scholar 

  • Friedlander M, Gonen Y, Kashman Y, Beer S (1996) Gracilaria conferta and its epiphytes: 3. Allelopathic inhibition of the red seaweed by Ulva cf. lactuca. J Appl Phycol 8:21–25

    Article  Google Scholar 

  • Gordillo FJ, Figueroa FL, Niell FX (2003) Photon- and carbon-use efficiency in Ulva rigida at different CO2 and N levels. Planta 218:315–322

    Article  CAS  PubMed  Google Scholar 

  • Gran G (1952) Determination of the equivalence point in potentiometric titrations of seawater with hydrochloric acid. Oceanol Acta 5:209–218

    Google Scholar 

  • Gruber N, Hauri C, Lachkar Z, Loher D, Frölicher TL, Plattner GK (2012) Rapid progression of ocean acidification in the California current system. Science 337:220–223

    Article  CAS  PubMed  Google Scholar 

  • Harvey BP, Gwynn-Jone D, Moore PJ (2013) Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol Evol 3(4):1016–1030

    Article  PubMed  PubMed Central  Google Scholar 

  • Health RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  Google Scholar 

  • Hepburn CD, Pritchard DW, Cornwall CE, Mcleod RJ, Beardall J, Raven JA, Hurd CL (2011) Diversity of carbon use strategies in a kelp forest community: implications for a high CO2 ocean. Glob Chang Biol 17:2488–2497

    Article  Google Scholar 

  • Hofmann GE, Barry JP, Edmunds PJ, Gates RD, Hutchins DA, Klinger T, Sewell MA (2010) The effect of ocean acidification on calcifying organisms in marine ecosystems: an organism-to-ecosystem perspective. Annu Rev Ecol Evol Syst 41:127–147

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007 synthesis report. Cambridge University Press, New York

    Book  Google Scholar 

  • Kang JW, Chung IK (2017) The effects of eutrophication and acidification on the ecophysiology of Ulva pertusa Kjellman. J Appl Phycol 29:2675–2683

    Article  CAS  Google Scholar 

  • Kerrison P, Suggett DJ, Hepburn LJ, Steinke M (2012) Effect of elevated pCO2 on the production of dimethylsulphoniopropionate (DMSP) and dimethylsulphide (DMS) in two species of Ulva (Chlorophyceae). Biogeochemistry 110:5–16

    Article  CAS  Google Scholar 

  • Khatun S, Ali MB, Hahn E-J, Paek KY (2008) Copper toxicity in Withania somnifera: growth and antioxidant enzymes responses of in vitro growing plants. Environ Exp Bot 64:279–285

    Article  CAS  Google Scholar 

  • Kleypas J, Langdon C (2000) Overview of CO2-induced changes in seawater chemistry. Proceedings 9th International Coral Reef Symposium, Bali, Indonesia 2, pp 23–27

  • Kochert G (1978a) Carbohydrate determination by phenol sulphuric acid method. In: Hellebust JA, Craigie JS (eds) Handbook of Phycological methods: physiological and biochemical methods. Cambridge University Press, Cambridge, pp 95–97

    Google Scholar 

  • Kochert G (1978b) Protein determination by dye binding. In: Hellebust JA, Craigie JS (eds) Handbook of phycological methods: physiological and biochemical methods. Cambridge University Press, Cambridge, pp 91–93

    Google Scholar 

  • Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge

    Book  Google Scholar 

  • Li L, Dong K, Tang X (2008) Response of interspecific competition between Ulva pertusa and Grateloupia filicina to UV-B irradiation enhancement. Environ Sci 29:2766–2772 (In Chinese with English abstract)

    Google Scholar 

  • Luo MB, Liu F, Xu ZL (2012) Growth and nutrient uptake capacity of two co-occurring species, Ulva prolifera and Ulva linza. Aquat Bot 100:18–24

    Article  CAS  Google Scholar 

  • Magnusson G, Larsson C, Axelsson L (1996) Effects of high CO2 treatment on nitrate and ammonium uptake by Ulva lactuca grown in different nutrient regimes. Sci Mar 60:179–189

    CAS  Google Scholar 

  • Mercado JM, Javier F, Gordillo L, Niell X, Figueroa FL (1999) Effects of different levels of CO2 on photosynthesis and cell components of the red alga Porphyra leucosticte. J Appl Phycol 11:455–461

    Article  Google Scholar 

  • Naldi M, Wheeler PA (2002) 15N Measurement of ammonium and nitrate uptake by Ulva fenestrata (Chlorophyta) and Gracilaria pacifica (Rhodophyta): comparison of net nutrient disappearance, release of ammonium and nitrate, and 15N accumulation in algal tissue. J Phycol 38:135–144

    Article  Google Scholar 

  • Olabarria C, Arenas F, Viejo RM, Gestoso I, Vaz-Pinto F, Incera M, Rubal M, Cacabelos E, Veiga P, Sobrino C (2013) Response of macroalgal assemblages from rockpools to climate change: effects of persistent increase in temperature and CO2. Oikos 122:1065–1079

    Article  CAS  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  PubMed  Google Scholar 

  • Pang SJ, Zhang ZH, Zhao HJ, Sun JZ (2007) Cultivation of the brown alga Hizikia fusiformis (Harvey) Okamura: stress resistance of artificially raised young seedlings revealed by chlorophyll fluorescence measurement. J Appl Phycol 19:557–565

    Article  CAS  Google Scholar 

  • Rivers JS, Peckol P (1995) Interactive effects of nitrogen and dissolved inorganic carbon on photosynthesis, growth, and ammonium uptake of the macroalgae Cladophora vagabunda and Gracilaria tikvahiae. Mar Biol 121:747–753

    Article  CAS  Google Scholar 

  • Sarker MY, Bartsch I, Olischläger M, Gutow L, Wiencke C (2013) Combined effects of CO2, temperature, irradiance and time on the physiological performance of Chondrus crispus (Rhodophyta). Bot Mar 56:63–74

    Article  Google Scholar 

  • Sun Y, Bao X, Sun Q, Rao D, Xiao C, Xun J (2012) The prevention and elimination of hostile organisms occurred in the raft type cultivation of Gelidium amansii lamx. J Zhejiang Ocean U (Nat Sci) 31:79–84 In Chinese with English abstract)

    Google Scholar 

  • Verschoor AM, Van Dijk MA, Huisman J, Van Donk E (2013) Elevated CO2 concentrations affect the elemental stoichiometry and species composition of an experimental phytoplankton community. Freshw Biol 58:597–611

    Article  CAS  Google Scholar 

  • Xu J, Gao K (2013) Co-effects of CO2 and solar UVR on the growth and photosynthetic performance of the economic red macroalga Porphyra haitanensis. Acta Oceanol Sin 35:184–190 (In Chinese with English abstract)

    CAS  Google Scholar 

  • Xu J, Gao K (2015) Photosynthetic performance of the red alga Pyropia haitanensis during emersion, with special reference to effects of solar UV radiation, dehydration and elevated CO2 concentration. Photochem Photobiol 91:1376–1381

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Zou D, Zhang X, Liu S, Gao K (2008) Effects of increased atmospheric CO2 and N supply on growth, biochemical compositions and uptake of nutrients in Gracilaria lemaneiformis (Rhodophyta). Acta Ecol Sin 28:3752–3759 (In Chinese with English abstract)

    Article  CAS  Google Scholar 

  • Xu D, Wang D, Li B, Fan X, Zhang X, Ye N, Wang Y, Mou S, Zhuang Z (2015) Effects of CO2 and seawater acidification on the early stages of Saccharina japonica development. Environ Sci Technol 49:3548–3556

    Article  CAS  PubMed  Google Scholar 

  • Zou D (2005) Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta). Aquaculture 250:726–735

    Article  CAS  Google Scholar 

  • Zou D, Chen X (2002) Effects of elevated CO2 concentration on growth and some physiological and biochemical traits in Enteromorpha clathrata (Chlorophyta). Mar Sci Bull 21:38–45. (In Chinese with English abstract)

    Google Scholar 

  • Zou D, Gao K (2002) Effects of desiccation and CO2 concentrations on emersed photosynthesis in Porphyra haitanensis (Bangiales, Rhodophyta), a species farmed in China. Eur J Phycol 37:587–592

    Article  Google Scholar 

  • Zou D, Gao K (2004) Exogenous carbon acquisition of photosynthesis in Porphyra haitanensis (Bangiales, Rhodophyta) under emersed state. Prog Nat Sci 14(02):138–144

    Article  CAS  Google Scholar 

  • Zou D, Gao K (2010) Physiological responses of seaweeds to elevated atmospheric CO2 concentrations. In: Seckbach P, Einav R, Israel A (eds) Seaweeds and their role in globally changing environments. Springer, Dordrecht, pp 115–126

    Chapter  Google Scholar 

  • Zou D, Gao K, Ruan Z (2001) Effects of elevated CO2 concentration on photosynthesis and nutrients uptake of Ulva lactuca. J Ocean Univ Qingdao 31:877–882 (In Chinese)

    CAS  Google Scholar 

  • Zou D, Gao K, Luo H (2011) Short- and long-term effects of elevated CO2 on photosynthesis and respiration in the marine macroalga Hizikia fusiformis (Sargassaceae, Phaeophyta) grown at low and high N supplies. J Phycol 47:87–97

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 41706147 and 41876124), the National Natural Science Foundation of Guangdong Province (2018B030311029), and the Fundamental Research Funds for the Central Universities of China (217BQ082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinghui Zou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Lin, L., Ma, Z. et al. Carbon and nitrogen accumulation and interspecific competition in two algae species, Pyropia haitanensis and Ulva lactuca, under ocean acidification conditions. Aquacult Int 27, 721–733 (2019). https://doi.org/10.1007/s10499-019-00360-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-019-00360-y

Keywords

Navigation