PGF and gonadal steroid plasma levels of successful and unsuccessful spawning Piaractus mesopotamicus (Teleostei, Characiformes) females

Abstract

Gonadal steroid and prostaglandin F2α (PGF) plasma levels were evaluated in successfully (SP) and unsuccessfully ovulated (UN) female Piaractus mesopotamicus. Forty-one females were injected with crude carp pituitary extract (0.6 and 5.4 mg kg−1 with a 24-h interval between the doses) and sampled to determine the plasma concentration of 17β-estradiol (E2), 17α-hydroxyprogesterone (17α-OHP), 17α,20β-dihydroxy-4-pregnen-3-one (DHP), PGF, and testosterone (T) after each injection (first—A1 and second—A2), and at the time of ovulation for SP and UN. Two clusters were obtained using multivariate analysis: 1—composed of all A1, all A2, and some UN; and 2—composed of all SP and some UN. Median values of E2 plasma levels were similar between clusters; however, plasma levels of T, 17α-OHP, DHP, and PGF of cluster 2 (predominantly formed by SP) were higher than those of cluster 1. Since cluster 2 contained all SP and females of this cluster presented higher levels of PGF, T, 17α-OHP, and DHP, here we evidently shown in an unprecedented manner that concomitant increased levels of these substances were associated with successful ovulation in this species, but such an increase was not determinant for successful ovulation due to the presence of some UN females in the same cluster 2. These findings highlight the unexplored potential of PGF to be used as an accessory tool for inducing successful ovulation for fish farming purposes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Asturiano JF, Sorbera LA, Ramos J, Kime DE, Carrillo M, Zanuy S (2002) Group-synchronous ovarian development, ovulation and spermiation in the European sea bass (Dicentrarchus labrax L.) could be regulated by shifts in gonadal steroidogenesis. Sci Mar 66:273–282

    Article  Google Scholar 

  2. Berndston AK, Goetz FW, Duman P (1989) In vitro ovulation, prostaglandin synthesis, and proteolysis in isolated ovarian components of yellow perch (Perca flavescens): effects of 17,20β-diidroxi-4-pregnen-3-one and phorbol ester. Gen Comp Endocrinol 75:454–465

    Article  Google Scholar 

  3. Bradley JA, Goetz FW (1994) The inhibitory effects of indometachin nordihydroguaiaretic acid, and pyrrolidinedithiocarbamate on ovulation and protaglandin synthesis in yellow perch (Perca flavescens) follicle incubates. Prostaglandins 48:11–20

    Article  PubMed  CAS  Google Scholar 

  4. Cetta F, Goetz FW (1982) Ovarian and plasma prostaglandin E and F levels in brook trout (Salvelinus fontinalis) during pituitary-induced ovulation. Biol Reprod 27:1216–1221

    Article  PubMed  CAS  Google Scholar 

  5. Chourasia TK, Joy KP (2012) Role of catecholestrogens on ovarian prostaglandin secretion in vitro in the catfish Heteropneustes fossilis and possible mechanism of regulation. Gen Comp Endocrinol 177:128–142

    Article  PubMed  CAS  Google Scholar 

  6. Criscuolo-Urbinati E, Kuradomi RY, Urbinati EC, Batlouni SR (2012) The administration of exogenous prostaglandin may improve ovulation in pacu (Piaractus mesopotamicus). Theriogenology 78:2087–2094

    Article  PubMed  CAS  Google Scholar 

  7. Fostier A, Weil C, Terqui M, Breton B, Jalabert B (1978) Plasma estradiol-17β and gonadotropin during ovulation in rainbow trout (Salmo gairdneri R.). Ann Biol Anim Biochim Biophys 18:929–936

    Article  CAS  Google Scholar 

  8. Fujimori C, Ogiwara K, Hagiwara A, Rajapakse S, Kimura A, Takahashi T (2011) Expression of cyclooxygenase-2 and prostaglandin receptor EP4b mRNA in the ovary of the medaka fish, Oryzias latipes: possible involvement in ovulation. Mol Cell Endocrinol 332:67–77

    Article  PubMed  CAS  Google Scholar 

  9. Fujimori C, Ogiwara K, Hagiwara A, Takahashi T (2012) New evidence for the involvement of prostaglandin receptor EP4b in ovulation of the medaka, Oryzias latipes. Mol Cell Endocrinol 362:76–84

    Article  PubMed  CAS  Google Scholar 

  10. Goetz FW (1983) Hormonal control of oocyte final maturation and ovulation in fishes. In: Hoar WS, Randall DJ, Donaldson ΕΜ (eds) Fish physiology. Academic, New York

    Google Scholar 

  11. Goetz FW, Theofan G (1979) In vitro stimulation of germinal vesicle breakdown and ovulation of yellow perch (Perca flavescens) oocytes. Effects of 17α-hydroxy-20β-dihydroprogesterone and prostaglandins. Gen Comp Endocrinol 37:273–285

    Article  PubMed  CAS  Google Scholar 

  12. Gohin M, Bodinier P, Fostier A, Chesnel F, Bobe J (2011) Aromatase is expressed and active in the rainbow trout oocyte during final oocyte maturation. Mol Reprod Dev 78:510–518

    Article  PubMed  CAS  Google Scholar 

  13. Hainfellner P, De Souza TG, Muños ME, Freitas GA, Batlouni SR (2012) Spawning failure in Brycon amazonicus may be associated with ovulation and not with final oocyte maturation. Arq Bras Med Vet Zootec 64:515–517

    Article  Google Scholar 

  14. Hoogenboom MO, Metcalfe NB, Groothuis TGG, De Vries B, Costantini D (2012) Relationship between oxidative stress and circulating testosterone and cortisol in pre-spawning female brown trout. Comp Biochem Physiol A Mol Integr Physiol 163:379–387

    Article  PubMed  CAS  Google Scholar 

  15. Jalabert B, Fostier A (1984) The modulatory effectin vitro of oestradiol-17β, testosterone or cortisol on the output of 17α-hydroxy-20β dihydroprogesterone by rainbow trout (Salmo gairdneri) ovarian follicles stimulated by the maturational gonadotropin s-GtH. Reprod Nutr Dev 24:127–136

    Article  CAS  Google Scholar 

  16. Jalabert B, Szöllösi D (1975) In vitro ovulation of trout oocytes: effect of prostaglandin on smooth muscle-like cells of the theca. Prostaglandins 9:765–779

    Article  PubMed  CAS  Google Scholar 

  17. Joy KP, Chaube R (2015) Vasotocin—a new player in the control of oocyte maturation and ovulation in fish. Gen Comp Endocrinol 221:54–63

    Article  PubMed  CAS  Google Scholar 

  18. Joy KP, Singh V (2013) Functional interactions between vasotocin and prostaglandins during final oocyte maturation and ovulation in the catfish Heteropneustes fossilis. Gen Comp Endocrinol 186:126–135

    Article  PubMed  CAS  Google Scholar 

  19. Kagawa H, Tanaka H, Unuma T, Ohta H, Geen K, Ozukawa K (2003) Role of prostaglandin in the control of ovulation in the Japanese eel Anguilla japonica. Fish Sci 69:234–241

    Article  CAS  Google Scholar 

  20. Knight OM, Van Der Kraak G (2015) The role of eicosanoids in 17α, 20β-dihydroxy-4-pregnen-3-one-induced ovulation and spawning in Danio rerio. Gen Comp Endocrinol 213:50–58

    Article  PubMed  CAS  Google Scholar 

  21. Levavi-Sivan B, Vaiman R, Sachs O, Tzchori I (2004) Spawning induction and hormonal levels during final oocyte maturation in the silver perch (Bidyanus bidyanus). Aquaculture 229:419–431

    Article  Google Scholar 

  22. Levavi-Zermonsky B, Yaron Z (1986) Changes in gonadotropin and ovarian steroids associated with oocytes maturation during spawning induction in the carp. Gen Comp Endocrinol 62:89–98

    Article  PubMed  CAS  Google Scholar 

  23. Lister AL, Van Der Kraak G (2008) An investigation into the role of prostaglandins in zebrafish oocyte maturation and ovulation. Gen Comp Endocrinol 159:46–57

    Article  PubMed  CAS  Google Scholar 

  24. Lubzens E, Young G, Bobe J, Cerda J (2010) Oogenesis in teleosts: how eggs are formed. Gen Comp Endocrinol 165:367–389

    Article  PubMed  CAS  Google Scholar 

  25. Malison JA, Procarione LS, Barry TP, Kapuscinski AR, Kayes TB (1994) Endocrine and gonadal changes during annual reproductive cycle of the freshwater teleost, Stizostedion vitreum. Fish Physiol Biochem 13:473–484

    Article  PubMed  CAS  Google Scholar 

  26. Mercure F, Van Der Kraak G (1995) Inhibition of gonadotropin stimulated ovarian steroid production by polyunsaturated fatty acids in teleost fish. Lipids 30:547–554

    Article  PubMed  CAS  Google Scholar 

  27. Mikolajczyk T, Sokosmallerska-Mikolajczyk M, Chyb J, Szczerbik P, Socha M, Foks M, Duc M, Epler P (2007) LH secretion and 17β-oestradiol concentration in the blood plasma and hypothalamus of goldfish (Carassius auratus gibelio B.) and common carp (Cyprinus carpio L.) treated with fadrozole (aromatase inhibitor) and GnRH analogues. Czech J Anim Sci 52:354–362

    Article  CAS  Google Scholar 

  28. Moro GV, Rezende FP, Alves AL, Hashimoto DT, Varela ES, Torati LS (2013) Espécies de peixe para piscicultura. In: Rodrigues APO, Lima AF, Alves AL, Rosa DK, Torati LS, Santos VVR (eds) Piscicultura de água doce: Multiplicando conhecimentos, 1st edn. Embrapa, Brasília

    Google Scholar 

  29. Mylonas CC, Fostier A, Zanuy S (2010) Broodstock management and hormonal manipulations of fish reproduction. Gen Comp Endocrinol 165:516–534

    Article  PubMed  CAS  Google Scholar 

  30. Nagahama Y, Yamashita M (2008) Regulation of oocyte maturation in fish. Develop Growth Differ 50:S195–S219

    Article  CAS  Google Scholar 

  31. Ogata H, Nomura T, Hata M (1979) Prostaglandin F2 alfa changes induced by ovulatory stimuli in the pond loach, Misgurnus anguilicaudatus. Nippon Suisan Gakkai Shi 45:929–931

    Article  CAS  Google Scholar 

  32. Ogiwara K, Takahashi T (2016) A dual role for melatonin in medaka ovulation: ensuring prostaglandin synthesis and actin cytoskeleton rearrangement in follicular cells. Biol Reprod 94:1–15

    Article  CAS  Google Scholar 

  33. Pang Y, Thomas P (2010) Role of G protein-coupled estrogen receptor 1, GPER, in inhibition of oocyte maturation by endogenous estrogens in zebrafish. Dev Biol 342:194–206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Pang Y, Dong J, Thomas P (2008) Estrogen signaling characteristics of Atlantic croaker G protein-coupled receptor 30 (GPR30) and evidence it is involved in maintenance of oocyte meiotic arrest. Endocrinology 149:3410–3426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Pinter J, Thomas P (1999) Induction of ovulation of mature oocytes by the maturation-inducing steroid 17,20beta,21-trihydroxy-4-pregnen-3-one in the spotted seatrout. Gen Comp Endocrinol 115:200–209

    Article  PubMed  CAS  Google Scholar 

  36. Pottinger TG, Pickering AD, Hurley MA (1992) Consistency in the stress response of individuals of two strains of rainbow trout, Oncorhynchus mykiss. Aquaculture 103:275–289

    Article  Google Scholar 

  37. Romagosa E, Paiva P, Godinho HM (1990) Pattern of oocyte diameter frequency distribution in females of the pacu, Piaractus mesopotamicus (Holmberg, 1887) (= Colossoma mitrei Berg, 1895), induced to spawn. Aquaculture 86:105–110

    Article  Google Scholar 

  38. Schreck CB (2010) Stress and fish reproduction: the roles of allostasis and hormesis. Gen Comp Endocrinol 165:549–556

    Article  PubMed  CAS  Google Scholar 

  39. Senthilkumaran B, Yoshikuni M, Nagahama Y (2004) A shift in steroidogenesis occurring in ovarian follicles prior to oocyte maturation. Mol Cell Endocrinol 215:11–18

    Article  PubMed  CAS  Google Scholar 

  40. Slater CH, Schreck CB, Swanson P (1994) Plasma profiles of the sex steroids and gonadotropins in maturing female spring Chinook salmon (Oncorhynchus tshawytscha). Comp Biochem Physiol A Mol Integr Physiol 109:167–175

    Article  Google Scholar 

  41. Takahashi T, Fujimori C, Hagiwara A, Ogiwara K (2013) Recent advances in the understanding of teleost medaka ovulation: the roles of proteases and prostaglandins. Zool Sci 30:239–247

    Article  PubMed  CAS  Google Scholar 

  42. Theofan G, Goetz FW (1981) The in vitro effects of transcriptional and translational protein synthesis inhibitors on final maturation and ovulation of yellow perch (Perca flavescens) oocytes. Comp Biochem Physiol A Mol Integr Physiol 69:557–561

    Article  Google Scholar 

  43. Van Der Kraak G, Chang J (1990) Arachidonic acid stimulates steroidogenesis in goldfish preovulatory ovarian follicles. Gen Comp Endocrinol 77:221–228

    Article  PubMed  Google Scholar 

  44. Wade M, Van Der Kraak G (1993) Arachidonic acid and prostaglandin E2 stimulate testosterone production by goldfish testis in vitro. Gen Comp Endocrinol 90:109–118

    Article  PubMed  CAS  Google Scholar 

  45. Yaron Z, Bogomolnaya A, Drori S, Biton I, Aizen J, Kulikovsky Z, Levavi-Sivan B (2009) Spawning induction in the carp. Past experience and future prospects—a review. Isr J Aquacult 61:5–26

    Google Scholar 

  46. Zohar Y, Mylonas CC (2001) Endocrine manipulations of spawning in cultured fish: from hormones to genes. Aquaculture 197:99–136

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Elisabeth Criscuolo Urbinati (Departamento de Morfologia e Fisiologia Animal/Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal - FCAV) for helping with the initial hypothesis.

Funding

The main source of funding was the National Council for Scientific and Technological Development (CNPq, Portuguese: Conselho Nacional de Desenvolvimento Científico e Tecnológico) by Process 458274/2014-3 and 447169/2014-9 and “Programa de Apoio aos Biotérios da Unesp” – PROPE-UNESP-2014. Additionally, the cost of the fish and their maintenance was covered by the Centro de Aquicultura da UNESP – CAUNESP. R.Y.K. was supported by Coordination for the Improvement of Higher Education Personnel (CAPES, Portuguese: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) under the National Postdoctoral Program (PNPD-CAPES).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sergio Ricardo Batlouni.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuradomi, R.Y., Batlouni, S.R. PGF and gonadal steroid plasma levels of successful and unsuccessful spawning Piaractus mesopotamicus (Teleostei, Characiformes) females. Aquacult Int 26, 1083–1094 (2018). https://doi.org/10.1007/s10499-018-0269-8

Download citation

Keywords

  • Pacu
  • Crude carp pituitary extract
  • Successful spawning
  • Gonadal steroid plasma levels
  • Prostaglandin F
  • Multivariate analysis