Skip to main content

Towards commercial aquaponics: a review of systems, designs, scales and nomenclature

Abstract

Aquaponics is rapidly developing as the need for sustainable food production increases and freshwater and phosphorous reserves shrink. Starting from small-scale operations, aquaponics is at the brink of commercialization, attracting investment. Arising from integrated freshwater aquaculture, a variety of methods and system designs has developed that focus either on fish or plant production. Public interest in aquaponics has increased dramatically in recent years, in line with the trend towards more integrated value chains, greater productivity and less harmful environmental impact compared to other production systems. New business models are opening up, with new customers and markets, and with this expansion comes the potential for confusion, misunderstanding and deception. New stakeholders require guidelines and detail concerning the different system designs and their potentials. We provide a definitive definition of aquaponics, where the majority (> 50%) of nutrients sustaining the optimal plant growth derives from waste originating from feeding aquatic organisms, classify the available integrated aquaculture and aquaponics (open, domestic, demonstration, commercial) systems and designs, distinguish four different scales of production (≤ 50, > 50–≤ 100 m2, > 100–≤ 500 m2, > 500 m2) and present a definite nomenclature for aquaponics and aquaponic farming allowing distinctions between the technologies that are in use. This enables authorities, customers, producers and all other stakeholders to distinguish between the various systems, to better understand their potentials and constraints and to set priorities for business and regulations in order to transition RAS or already integrated aquaculture into commercial aquaponic systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Ako H, Baker A (2009) Small-scale lettuce production with hydroponics or aquaponics. College of Tropical Agriculture and Human Resources Sustainable Agriculture: 1–7

  • Al-Hafedh YS, Alam A, Beltagi MS (2008) Food production and water conservation in a recirculating aquaponic system in Saudi Arabia at different ratios of fish feed to plants. J World Aquac Soc 39(4):510–520. https://doi.org/10.1111/j.1749-7345.2008.00181.x

    Article  Google Scholar 

  • Appelbaum S, Kotzen B (2016) Further investigations of aquaponics using brackish water resources of the Negev desert. Ecocycles 2(2):26–35

    Article  Google Scholar 

  • Bakhsh HK, Chopin TA (2012) A variation on the IMTA theme: a land-based, closed-containment freshwater IMTA system for tilapia and lettuce. AAC Spec Publ No 22:57–60

    Google Scholar 

  • Bakhsh HK, Chopin T, Murray SA, Belyea E, Hamer A (2015) Adapting the concepts of tropical integrated agriculture-aquaculture (IAA) and aquaponics to temperate-cold freshwater integrated multi-trophic aquaculture (FIMTA). In: Wade J, Jackson T, Brewer K Aquaculture Canada 2014, Proceedings of Contributed Papers, Bulletin of the Aquaculture Association of Canada (2015-1): 17–25

  • Boxman SE, Nystrom M, Capodice JC, Ergas SJ, Main KL, Trotz MA (2017) Effect of support medium, hydraulic loading rate and plant density on water quality and growth of halophytes in marine aquaponic systems. Aquac Res 48(5):2463–2477. https://doi.org/10.1111/are.13083

    Article  CAS  Google Scholar 

  • Brod E, Oppen J, Kristoffersen AØ, Haraldsen TK, Krogstad T (2017) Drying or anaerobic digestion of fish sludge: Nitrogen fertilisation effects and logistics. Ambio 46 (8):852–864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buhmann AK, Waller U, Wecker B, Papenbrock J (2015) Optimization of culturing conditions and selection of species for the use of halophytes as biofilter for nutrient-rich saline water. Agric Water Manag 149:102–114. https://doi.org/10.1016/j.agwat.2014.11.001

    Article  Google Scholar 

  • Chopin T, Buschmann AH, Halling C, Troell M, Kautsky N, Neori A, Kraemer GP, Zertuche-González JA, Yarish C, Neefus C (2001) Integrating seaweeds into marine aquaculture systems: a key toward sustainability. J Phycol 37(6):975–986. https://doi.org/10.1046/j.1529-8817.2001.01137.x

    Article  Google Scholar 

  • de Vries J, Fleuren R (2015) A spatial typology for designing a local food system.In: Localizing urban food strategies. Farming cities and performing rurality. 7th International Aesop Sustainable Food Planning Conference Proceedings, Torino, 7-9 October 2015, edited by Giuseppe Cinà and Egidio Dansero, Torino, Politecnico di Torino, 2015: 297–306, ISBN 978-88-8202-060-6

  • Dela Cruz CR, Lightfoot C, Costa-Pierce BA, Carangal VR, Bimbao MAP (1992) Rice-fish research and development in Asia. ICLARM Conf. Proc. 24, p 457

  • Delaide B, Goddek S, Gott J, Soyeurt H, Jijakli MH (2016) Lettuce (Lactuca sativa L. var. Sucrine) growth performance in complemented aquaponic solution outperforms hydroponics. Water 8(10):467. https://doi.org/10.3390/w8100467

    Article  Google Scholar 

  • die Urbanisten e.V. (2017) https://dieurbanisten.de/.die Urbanisten e.V. Rheinische Straße 137, 44137 Dortmund, Germany

  • Diver S (2006) Aquaponics–integration of hydroponics with aquaculture. Publication No. IP163. ATTRA, National Sustainable Agriculture Information Service: p 28

  • Essa MA, Goda AMAS, Hanafy MA, El-Shebly AA, Mohamed RA, El-Ebiary EH (2008) Small-scale fish culture: guiding models of aquaponics and net-enclosures fish farming in Egypt. Egypt J Aquat Res 34(3):320–337

  • FAO (1988) Definition of aquaculture. Seventh Session of the IPFC Working Party of Expects on Aquaculture, IPFC/WPA/WPZ, p.1–3, RAPA/FAO, Bangkok

  • Fernández-Cañero R, Pérez-Urrestarazu L, Egea G (2015) Design and preliminary assessment of a vertical aquaponics system for ornamental purposes. In: International Conference on Living Walls and Ecosystems Services:1–41

  • Fernando CH (1993) Rice field ecology and fish culture–an overview. Hydrobiologia 259(2):91–113. https://doi.org/10.1007/BF00008375

    Article  Google Scholar 

  • Giacomantonio PJ (2012) Vertical aquaponic micro farm. U.S. Patent No. 8,181,391. Washington, DC: U.S. Patent and Trademark Office

  • Giacomantonio PJ (2013) Rotating aquaponic vertical garden using a stretchable grow media. U.S. Patent No. 8,516,743. Washington, DC: U.S. Patent and Trademark Office

  • Goddek S, Delaide B, Mankasingh U, Ragnarsdottir KV, Jijakli MH, Thorarinsdottir R (2015) Challenges of sustainable and commercial aquaponics. Sustainability 7(4):4199–4224. https://doi.org/10.3390/su7044199

    Article  Google Scholar 

  • Goddek S, Espinal CA, Delaide B, Jijakli MH, Schmautz Z, Wuertz S, Keesman KJ (2016) Navigating towards decoupled aquaponic systems: a system dynamics design approach. Water 8(7):303. https://doi.org/10.3390/w8070303

    Article  CAS  Google Scholar 

  • Graber A, Junge R (2009) Aquaponic systems: nutrient recycling from fish wastewater by vegetable production. Desalination 246(1–3):147–156. https://doi.org/10.1016/j.desal.2008.03.048

    Article  CAS  Google Scholar 

  • Graber A, Antenen N, Junge R (2014) The multifunctional aquaponic system at ZHAW used as research and training lab. In: 3rd Conference with International Participation, Conference VIVUS – on Agriculture, Environmentalism, Horticulture and Floristics, Food Production and Processing and Nutrition »Transmission of Innovations, Knowledge and Practical Experience into Everyday Practice«, 14th and 15th November 2014, Biotechnical Centre Naklo, Strahinj 99, Naklo, Slovenia: 245–255

  • Gumble J (2015) Green towers: production and financial analyses of urban agricultural systems. Master thesis Pennsylvania State University. The Graduate School College of Agricultural Sciences: 110 p

  • Gunning D, Harman L, Keily M, Nunan R, Jones P, Horgan B, Burnell G (2014) Designing a marine aquaponics (maraponics) system to model IMTA. In Proceedings of the Aquaculture Europe Conference 2014, San Sebastian, Spain, 14–17 October 2014; Available online: https://www.was.org/easonline/documents/MeetingPresentations/AE2014/AE2014_0681.pdf. Accessed on 13 Sept 2016

  • Gunning D, Maguire J, Burnell G (2016) The development of sustainable saltwater-based food production systems: a review of established and novel concepts. Water 8(12):598. https://doi.org/10.3390/w8120598

    Article  Google Scholar 

  • Herde L, Wild M (2015) Aquaponik in Rostock. Zukunftsmusik im Glashaus. DEGA. Gartenbauwissenschaft 12:45–48 [in German]

  • Horváth L, Tamás G, Seagrave C (2002) Carp and pond fish culture. Second Edition. Including chinese herbivorous species, pike, tench, zander, wels catfish, goldfish, african catfish and sterlet. Fishing News Books, Blackwell Science, p 170

  • INAPRO (2017) Innovative aquaponics for professional application. http://www.inapro-project.eu/

  • Junge R, König B, Villarroel M, Komives T, Jijakli MH (2017) Strategic points in aquaponics. Water 9(3):182. https://doi.org/10.3390/w9030182

    Article  Google Scholar 

  • Kalantari F, Tahir OM (2016) Public acceptance of vertical farming in urban high-density area of Kuala Lumpur. SelectedWorks. Faculty of Design and Architecture, University Putra Malaysia, 43300 Serdang, Malaysia: 44 p

  • Kangmin L (1988) Rice-fish culture in China: a review. Aquaculture 71(3):173–186. https://doi.org/10.1016/0044-8486(88)90257-8

    Article  Google Scholar 

  • Karimanzira D, Keesman KJ, Kloas W, Baganz D, Rauschenbach T (2016) Dynamic modeling of the INAPRO aquaponic system. Aquac Eng 75:29–45. https://doi.org/10.1016/j.aquaeng.2016.10.004

    Article  Google Scholar 

  • Klemenčič AK, Bulc TG (2015) The use of vertical constructed wetland and ultrasound in aquaponic systems. Environ Sci Pollut Res 22(2):1420–1430. https://doi.org/10.1007/s11356-014-3463-x

    Article  CAS  Google Scholar 

  • Kloas W, Rennert B, Van Ballegooy C, Drews M (2012) Aquaponic system for vegetable and fish production. U.S. Pat. No. 8,291,640 B2. Washington 2012, DC: U.S. Patent and Trademark Office

  • Kloas W, Groß R, Baganz D, Graupner J, Monsees H, Schmidt U, Staaks G, Suhl J, Tschirner M, Wittstock B, Wuertz S, Zikova A, Rennert B (2015) A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts. Aquac Environ Interact 7(2):179–192. https://doi.org/10.3354/aei00146

    Article  Google Scholar 

  • Knaus U, Palm HW (2017a) Effects of fish biology on ebb and flow aquaponical cultured herbs in northern Germany (Mecklenburg Western Pomerania). Aquaculture 466:51–63. https://doi.org/10.1016/j.aquaculture.2016.09.025

    Article  Google Scholar 

  • Knaus U, Palm HW (2017b) Effects of the fish species choice on vegetables in aquaponics under spring-summer conditions in northern Germany (Mecklenburg Western Pomerania). Aquaculture 473:62–73. https://doi.org/10.1016/j.aquaculture.2017.01.020

    Article  Google Scholar 

  • Kotzen B (2012) The power of landscape: the power of the landscape architect. In: Peer Reviewed Proceedings of ECLAS 2012 Conference. The Power of Landscape at Warsaw University of Life Sciences - SGGW. Warsaw University of Life Sciences, Warsaw, pp 185–189. ISBN 9788393588404

  • Kotzen B, Appelbaum S (2010) An investigation of aquaponics using brackish water resources in the Negev Desert. J Appl Aquac 22(4):297–320. https://doi.org/10.1080/10454438.2010.527571

    Article  Google Scholar 

  • Kotzen B, Khandaker M (2017) The potential for combining living wall and vertical farming systems in aquaponics. European Aquaculture Society Conference 2017 Meeting abstract, 17-20 October 2017, Dubrovnik, EAS Oostende, Belgium. https://www.was.org/easOnline/AbstractDetail.aspx?i=8445

  • Lennard WA (2015) AQUAPONICS: a nutrient dynamic process and the relationship to fish feeds. World aquaculture society September, 2015: 20–23

  • Lennard WA, Leonard BV (2004) A comparison of reciprocating flow versus constant flow in an integrated, gravel bed, aquaponic test system. Aquac Int 12(6):539–553. https://doi.org/10.1007/s10499-004-8528-2

    Article  Google Scholar 

  • Lennard WA, Leonard BV (2006) A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an Aquaponic test system. Aquac Int 14(6):539–550. https://doi.org/10.1007/s10499-006-9053-2

    Article  Google Scholar 

  • Lewis WM, Yopp JH, Schramm Jr HL, Brandenburg AM (1978) Use of hydroponics to maintain quality of recirculated water in a fish culture system. Trans Am Fish Soc 107(1):92–99. https://doi.org/10.1577/1548-8659(1978)107<92:UOHTMQ>2.0.CO;2

    Article  Google Scholar 

  • Little D, Muir J (1987) A guide to integrated warm water aquaculture. Institute of Aquaculture, Stirling ISBN 0-901636-71-1. 238 p

    Google Scholar 

  • Love DC, Fry JP, Li X, Hill ES, Genello L, Semmens K, Thompson RE (2015a) Commercial aquaponics production and profitability: findings from an international survey. Aquaculture 435:67–74. https://doi.org/10.1016/j.aquaculture.2014.09.023

    Article  Google Scholar 

  • Love DC, Uhl MS, Genello L (2015b) Energy and water use of a small-scale raft aquaponics system in Baltimore, Maryland, United States. Aquac Eng 68:19–27. https://doi.org/10.1016/j.aquaeng.2015.07.003

    Article  Google Scholar 

  • Lu J, Li X (2006) Review of rice–fish-farming systems in China—one of the globally important ingenious agricultural heritage systems (GIAHS). Aquaculture 260(1):106–113. https://doi.org/10.1016/j.aquaculture.2006.05.059

    Article  Google Scholar 

  • Malcolm J (2007) The start of an obsession. Backyard aquaponics magazine, issue 1, Summer 2007: 10–17

  • McMurtry MR, Nelson PV, Sanders DC, Hodges L (1990) Sand culture of vegetables using recirculated aquacultural effluents. Appl Agric Res 5(4):280–284

    Google Scholar 

  • McMurtry MR, Sanders DC, Cure JD, Hodson RG, Haning BC, Amand ECS (1997) Efficiency of water use of an integrated fish/vegetable co-culture system. J World Aquac Soc 28(4):420–428. https://doi.org/10.1111/j.1749-7345.1997.tb00290.x

    Article  Google Scholar 

  • Morgenstern R, Biernatzki R, Boelhauve M, Braun J, Dapprich P, Gerlach A, Haberlah-Korr V, Mergenthaler M, Mistele B, Schuster C, Winkler P, Wittmann M, Lorleberg W (2016) Pilotstudie “Nachhaltige Aquaponik-Erzeugung für Nordrhein-Westfalen”. Forschungsbericht des Fachbereichs Agrarwirtschaft Soest und des Instituts für Green Technology und Ländliche Entwicklung. 100 p [in German]

  • Mukherjee TK, Geeta S, Rohani A, Phang SM (1992) A study on integrated duck-fish and goat-fish production systems. In: Mukherjee TK, Moi PS, Panandam JM, Yang YS (1992) Integrated livestock-fish production systems. Proceedings. In FAO/IPT Workshop on Integrated Livestock-Fish Production Systems, Kuala Lumpur (Malaysia), 16-20 Dec 1991

  • Naegel LCA (1977) Combined production of fish and plants in recirculating water. Aquaculture 10(1):17–24. https://doi.org/10.1016/0044-8486(77)90029-1

    Article  Google Scholar 

  • Palm HW, Seidemann R, Wehofsky S, Knaus U (2014a) Significant factors influencing the economic sustainability of closed aquaponic systems. Part I: system design, chemo-physical parameters and general aspects. AACL Bioflux 7(1):20–32

    Google Scholar 

  • Palm HW, Bissa K, Knaus U (2014b) Significant factors affecting the economic sustainability of closed aquaponic systems. Part II: fish and plant growth. AACL Bioflux 7(3):162–175

    Google Scholar 

  • Palm HW, Nievel M, Knaus U (2015) Significant factors affecting the economic sustainability of closed aquaponic systems. Part III: plant units. AACL Bioflux 8(1):89–106

    Google Scholar 

  • Palm HW, Strauch S, Knaus U, Wasenitz B (2016) Das FischGlasHaus – eine Innovationsinitiative zur energie und nährstoffeffizienten Produktion unterschiedlicher Fisch- und Pflanzenarten in Mecklenburg-Vorpommern (“Aquaponik in MV”). Fisch Fischmarkt Mecklenburg-Vorpommern 1:38–47 [in German]

    Google Scholar 

  • Palm HW, Unger P, Kleinertz S, Wasenitz B, Mann G (2017) Baltic IMTA – Verfahrensentwicklung einer Integrierten Multi Trophischen Aquakultur für die Küstengewässer Mecklenburg-Vorpommerns (Teil 4). Fisch Fischmarkt Mecklenburg-Vorpommern 2(2017):45–48 [in German]

    Google Scholar 

  • Pantanella E (2008) Pond aquaponics: new pathways to sustainable integrated aquaculture and agriculture. Aquaculture News 34, May 2008

  • Pattillo DA (2017) An overview of aquaponic systems: hydroponic components. NCRAC Technical Bulletins 19. http://lib.dr.iastate.edu/ncrac_techbulletins/19

  • Perez G, Rincon L, Vila A, Gonzalez JM, Cabeza LF (2011) Green vertical systems for buildings as passive systems for energy savings. Appl Energy 88(12):4854–4859. https://doi.org/10.1016/j.apenergy.2011.06.032

    Article  Google Scholar 

  • Perini K, Ottelé M, Haas EM, Raiteri R (2013) Vertical greening systems, a process tree for green façades and living walls. Urban Ecosyst 16(2):265–277. https://doi.org/10.1007/s11252-012-0262-3

    Article  Google Scholar 

  • Rakocy JE (1989) Hydroponic lettuce production in a recirculating fish culture system. Univ. Virgin Islands Agric. Exp. Station, Island Perspect 3: 5–10

  • Rakocy JE (2012) Chapter 14: aquaponics–integrating fish and plant culture. In: Tidwell JH (ed) Aquaculture Production Systems, 2012, 1st edn. Wiley, Hoboken, 343–386

    Google Scholar 

  • Rakocy JE, Masser MP, Losordo TM (2006) Recirculating aquaculture tank production systems: aquaponics-integrating fish and plant culture. SRAC Publication - Southern Regional Aquaculture Center (454): 16 p

  • Rakocy JE, Bailey DS, Shultz RC, Danaher JJ (2010) The status of aquaponics–2010. World Aquac Soc 2010

  • Raviv M, Lieth JH (2008) Soilless culture: theory and practice. Elsevier, Amsterdam ISBN: 978-0-444-52975-6. 587 p

    Google Scholar 

  • Roy M, Salam M, Hossain MB, Shamsuddin M (2013) Feasibility study of aquaponics in polyculture pond. World Appl Sci J 23:588–592

    Google Scholar 

  • Salam MA, Asadujjaman M, Rahman MS (2013) Aquaponics for improving high density fish pond water quality through raft and rack vegetable production. World 5(3):251–256

    CAS  Google Scholar 

  • Savidov N (2004) Evaluation and development or aquaponics production and product market capabilities in Alberta. Ids Initiatives Fund Final Report Project #679056201, August 17, 2004. Alberta Agric Food Rural Dev 190 p

  • Schmautz Z, Graber A, Jaenicke S, Goesmann A, Junge R, Smits TH (2016) Microbial diversity in different compartments of an aquaponics system. Arch Microbiol:1–8

  • Scott JO (2009) A living tower: using architecture for sustainable future growth. Doctoral dissertation, University of Cape Town: 75 p

  • Sikawa DC, Yakupitiyage A (2010) The hydroponic production of lettuce (Lactuca sativa L) by using hybrid catfish (Clarias macrocephalus x C. gariepinus) pond water: potentials and constraints. Agric Water Manag 97(9):1317–1325. https://doi.org/10.1016/j.agwat.2010.03.013

    Article  Google Scholar 

  • Simeonidou M, Paschos I, Gouva E, Kolygas M, Perdikaris C (2012) Performance of a small-scale modular aquaponic system. AACL Bioflux 5(4):182–188

    Google Scholar 

  • Sneed K, Allen K, Ellis JE (1975) Fish farming and hydroponics. Aquaculture and the fish farmer 1(1):11–18

    Google Scholar 

  • Somerville C, Cohen M, Pantanella E, Stankus A, Lovatelli A (2014) Small-scale aquaponic food production. Integrated fish and plant farming. FAO Fisheries and Aquaculture Technical Paper No. 589 2014. Rome, FAO: 262 p

  • Soto D (2009) Integrated mariculture: a global review. FAO Fisheries and Aquaculture Technical Paper. No. 529. FAO, Rome, 183p

  • Stadler M, Baganz D, Vermeulen T, Keesman KJ (2015) Circular economy and economic viability of aquaponic systems: Comparing urban, rural and peri-urban scenarios under Dutch conditions. Proceedings of the ICESC 2015, Gold Coast, Australia

  • Stickney RR (1994) Principles of aquaculture. Wiley, Hoboken 502 p

    Google Scholar 

  • Suhl J, Dannehl D, Kloas W, Baganz D, Jobs S, Scheibe G, Schmidt U (2016) Advanced aquaponics: evaluation of intensive tomato production in aquaponics vs. conventional hydroponics. Agric Water Manag 178:335–344. https://doi.org/10.1016/j.agwat.2016.10.013

    Article  Google Scholar 

  • Thorarinsdottir RI, Kledal PR, Skar SLG, Sustaeta F, Ragnarsdottir KV, Mankasingh U, Pantanella E, van de Ven R, Shultz RC (2015) Aquaponics guidelines 2015. 64 p

  • Tilman D, Clark M (2014) Global diets link environmental sustainability and human health. Nature 515(7528):518–522. https://doi.org/10.1038/nature13959

    Article  PubMed  CAS  Google Scholar 

  • Troell M, Halling C, Neori A, Chopin T, Buschmann AH, Kautsky N, Yarish C (2003) Integrated mariculture: asking the right questions. Aquaculture 226(1-4):69–90. https://doi.org/10.1016/S0044-8486(03)00469-1

    Article  Google Scholar 

  • Troell M, Joyce A, Chopin T, Neori A, Buschmann AH, Fang J-G (2009) Ecological engineering in aquaculture — potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297(1-4):1–9. https://doi.org/10.1016/j.aquaculture.2009.09.010

    Article  Google Scholar 

  • Tyson RV, Simonne EH, Treadwell DD, White JM, Simonne A (2008) Reconciling pH for ammonia biofiltration and cucumber yield in a recirculating aquaponic system with perlite biofilters. Hortscience 43(3):719–724

    Google Scholar 

  • Urban Farmers (2017) UrbanFarmers, Technoparkstrasse 1 8005 Zürich, Switzerland. https://urbanfarmers.com/intro/

  • Vermeulen T, Kamstra A (2012) The need for systems design for robust aquaponic systems in the urban environment. In: International Symposium on Soilless Cultivation 1004: 71–77

  • Villarroel M, Alvariño JMR, Duran JM (2011) Aquaponics: integrating fish feeding rates and ion waste production for strawberry hydroponics. Span J Agric Res 9(2):537–545. https://doi.org/10.5424/sjar/20110902-181-10

    Article  Google Scholar 

  • Waller U, Buhmann AK, Ernst A, Hanke V, Kulakowski A, Wecker B, Orellana J, Papenbrock J (2015) Integrated multi-trophic aquaculture in a zero-exchange recirculation aquaculture system for marine fish and hydroponic halophyte production. Aquac Int 23(6):1473–1489. https://doi.org/10.1007/s10499-015-9898-3

    Article  Google Scholar 

  • Watten BJ, Busch RL (1984) Tropical production of tilapia (Sarotherodon aurea) and tomatoes (Lycopersicon esculentum) in a small-scale recirculating water system. Aquaculture 41(3):271–283. https://doi.org/10.1016/0044-8486(84)90290-4

    Article  Google Scholar 

  • Wilson G (2015) Wilson’s cities alive. Aquaponics network Australia 1(1):1–8

Download references

Acknowledgments

This review is a product of COST Action FA1305 ‘The EU Aquaponics Hub: Realising Sustainable Integrated Fish and Vegetable Production for the EU’. We thank the Ministry of Agriculture, Environment and Consumer Protection of Mecklenburg Western Pomerania and EIP-AGRI operational groups for supporting research in aquaponic fish and plant production (‘Aquaponik in MV’, BNRZD: 13 903 000 0103; WM-EIP-0007-15). Financial support was provided by the Leibniz Association within the scope of the Leibniz Science Campus Phosphorus Research Rostock (SAS-2015-IOW-LWC). This project was supported through the pilot project ‘FishGlassHouse: Innovationsinitiative zur ressourceneffizienten Nahrungsmittelproduktion in MV’ (European Fisheries Fund-EFF, grant number VI-560/730-32616-2013/025).

Author information

Authors and Affiliations

Authors

Contributions

Harry W. Palm and Ulrich Knaus wrote most parts of the manuscript. The paper was then jointly developed during the COST Action FA1305, with valuable inputs and participation of the other authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Harry W. Palm.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palm, H.W., Knaus, U., Appelbaum, S. et al. Towards commercial aquaponics: a review of systems, designs, scales and nomenclature. Aquacult Int 26, 813–842 (2018). https://doi.org/10.1007/s10499-018-0249-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-018-0249-z

Keywords

  • Aquaponic farming
  • Aquaponic systems
  • Circular economy
  • Definition
  • Integrated aquaculture systems
  • Nomenclature
  • Scale of operation
  • System design