Aquaculture International

, Volume 26, Issue 3, pp 813–842 | Cite as

Towards commercial aquaponics: a review of systems, designs, scales and nomenclature

  • Harry W. PalmEmail author
  • Ulrich Knaus
  • Samuel Appelbaum
  • Simon Goddek
  • Sebastian M. Strauch
  • Tycho Vermeulen
  • M. Haїssam Jijakli
  • Benz Kotzen


Aquaponics is rapidly developing as the need for sustainable food production increases and freshwater and phosphorous reserves shrink. Starting from small-scale operations, aquaponics is at the brink of commercialization, attracting investment. Arising from integrated freshwater aquaculture, a variety of methods and system designs has developed that focus either on fish or plant production. Public interest in aquaponics has increased dramatically in recent years, in line with the trend towards more integrated value chains, greater productivity and less harmful environmental impact compared to other production systems. New business models are opening up, with new customers and markets, and with this expansion comes the potential for confusion, misunderstanding and deception. New stakeholders require guidelines and detail concerning the different system designs and their potentials. We provide a definitive definition of aquaponics, where the majority (> 50%) of nutrients sustaining the optimal plant growth derives from waste originating from feeding aquatic organisms, classify the available integrated aquaculture and aquaponics (open, domestic, demonstration, commercial) systems and designs, distinguish four different scales of production (≤ 50, > 50–≤ 100 m2, > 100–≤ 500 m2, > 500 m2) and present a definite nomenclature for aquaponics and aquaponic farming allowing distinctions between the technologies that are in use. This enables authorities, customers, producers and all other stakeholders to distinguish between the various systems, to better understand their potentials and constraints and to set priorities for business and regulations in order to transition RAS or already integrated aquaculture into commercial aquaponic systems.


Aquaponic farming Aquaponic systems Circular economy Definition Integrated aquaculture systems Nomenclature Scale of operation System design 



This review is a product of COST Action FA1305 ‘The EU Aquaponics Hub: Realising Sustainable Integrated Fish and Vegetable Production for the EU’. We thank the Ministry of Agriculture, Environment and Consumer Protection of Mecklenburg Western Pomerania and EIP-AGRI operational groups for supporting research in aquaponic fish and plant production (‘Aquaponik in MV’, BNRZD: 13 903 000 0103; WM-EIP-0007-15). Financial support was provided by the Leibniz Association within the scope of the Leibniz Science Campus Phosphorus Research Rostock (SAS-2015-IOW-LWC). This project was supported through the pilot project ‘FishGlassHouse: Innovationsinitiative zur ressourceneffizienten Nahrungsmittelproduktion in MV’ (European Fisheries Fund-EFF, grant number VI-560/730-32616-2013/025).

Author contributions

Harry W. Palm and Ulrich Knaus wrote most parts of the manuscript. The paper was then jointly developed during the COST Action FA1305, with valuable inputs and participation of the other authors. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ako H, Baker A (2009) Small-scale lettuce production with hydroponics or aquaponics. College of Tropical Agriculture and Human Resources Sustainable Agriculture: 1–7Google Scholar
  2. Al-Hafedh YS, Alam A, Beltagi MS (2008) Food production and water conservation in a recirculating aquaponic system in Saudi Arabia at different ratios of fish feed to plants. J World Aquac Soc 39(4):510–520. CrossRefGoogle Scholar
  3. Appelbaum S, Kotzen B (2016) Further investigations of aquaponics using brackish water resources of the Negev desert. Ecocycles 2(2):26–35CrossRefGoogle Scholar
  4. Bakhsh HK, Chopin TA (2012) A variation on the IMTA theme: a land-based, closed-containment freshwater IMTA system for tilapia and lettuce. AAC Spec Publ No 22:57–60Google Scholar
  5. Bakhsh HK, Chopin T, Murray SA, Belyea E, Hamer A (2015) Adapting the concepts of tropical integrated agriculture-aquaculture (IAA) and aquaponics to temperate-cold freshwater integrated multi-trophic aquaculture (FIMTA). In: Wade J, Jackson T, Brewer K Aquaculture Canada 2014, Proceedings of Contributed Papers, Bulletin of the Aquaculture Association of Canada (2015-1): 17–25Google Scholar
  6. Boxman SE, Nystrom M, Capodice JC, Ergas SJ, Main KL, Trotz MA (2017) Effect of support medium, hydraulic loading rate and plant density on water quality and growth of halophytes in marine aquaponic systems. Aquac Res 48(5):2463–2477. CrossRefGoogle Scholar
  7. Brod E, Oppen J, Kristoffersen AØ, Haraldsen TK, Krogstad T (2017) Drying or anaerobic digestion of fish sludge: Nitrogen fertilisation effects and logistics. Ambio 46 (8):852–864CrossRefPubMedPubMedCentralGoogle Scholar
  8. Buhmann AK, Waller U, Wecker B, Papenbrock J (2015) Optimization of culturing conditions and selection of species for the use of halophytes as biofilter for nutrient-rich saline water. Agric Water Manag 149:102–114. CrossRefGoogle Scholar
  9. Chopin T, Buschmann AH, Halling C, Troell M, Kautsky N, Neori A, Kraemer GP, Zertuche-González JA, Yarish C, Neefus C (2001) Integrating seaweeds into marine aquaculture systems: a key toward sustainability. J Phycol 37(6):975–986. CrossRefGoogle Scholar
  10. de Vries J, Fleuren R (2015) A spatial typology for designing a local food system.In: Localizing urban food strategies. Farming cities and performing rurality. 7th International Aesop Sustainable Food Planning Conference Proceedings, Torino, 7-9 October 2015, edited by Giuseppe Cinà and Egidio Dansero, Torino, Politecnico di Torino, 2015: 297–306, ISBN 978-88-8202-060-6Google Scholar
  11. Dela Cruz CR, Lightfoot C, Costa-Pierce BA, Carangal VR, Bimbao MAP (1992) Rice-fish research and development in Asia. ICLARM Conf. Proc. 24, p 457Google Scholar
  12. Delaide B, Goddek S, Gott J, Soyeurt H, Jijakli MH (2016) Lettuce (Lactuca sativa L. var. Sucrine) growth performance in complemented aquaponic solution outperforms hydroponics. Water 8(10):467. CrossRefGoogle Scholar
  13. die Urbanisten e.V. (2017) Urbanisten e.V. Rheinische Straße 137, 44137 Dortmund, Germany
  14. Diver S (2006) Aquaponics–integration of hydroponics with aquaculture. Publication No. IP163. ATTRA, National Sustainable Agriculture Information Service: p 28Google Scholar
  15. Essa MA, Goda AMAS, Hanafy MA, El-Shebly AA, Mohamed RA, El-Ebiary EH (2008) Small-scale fish culture: guiding models of aquaponics and net-enclosures fish farming in Egypt. Egypt J Aquat Res 34(3):320–337Google Scholar
  16. FAO (1988) Definition of aquaculture. Seventh Session of the IPFC Working Party of Expects on Aquaculture, IPFC/WPA/WPZ, p.1–3, RAPA/FAO, BangkokGoogle Scholar
  17. Fernández-Cañero R, Pérez-Urrestarazu L, Egea G (2015) Design and preliminary assessment of a vertical aquaponics system for ornamental purposes. In: International Conference on Living Walls and Ecosystems Services:1–41Google Scholar
  18. Fernando CH (1993) Rice field ecology and fish culture–an overview. Hydrobiologia 259(2):91–113. CrossRefGoogle Scholar
  19. Giacomantonio PJ (2012) Vertical aquaponic micro farm. U.S. Patent No. 8,181,391. Washington, DC: U.S. Patent and Trademark OfficeGoogle Scholar
  20. Giacomantonio PJ (2013) Rotating aquaponic vertical garden using a stretchable grow media. U.S. Patent No. 8,516,743. Washington, DC: U.S. Patent and Trademark OfficeGoogle Scholar
  21. Goddek S, Delaide B, Mankasingh U, Ragnarsdottir KV, Jijakli MH, Thorarinsdottir R (2015) Challenges of sustainable and commercial aquaponics. Sustainability 7(4):4199–4224. CrossRefGoogle Scholar
  22. Goddek S, Espinal CA, Delaide B, Jijakli MH, Schmautz Z, Wuertz S, Keesman KJ (2016) Navigating towards decoupled aquaponic systems: a system dynamics design approach. Water 8(7):303. CrossRefGoogle Scholar
  23. Graber A, Junge R (2009) Aquaponic systems: nutrient recycling from fish wastewater by vegetable production. Desalination 246(1–3):147–156. CrossRefGoogle Scholar
  24. Graber A, Antenen N, Junge R (2014) The multifunctional aquaponic system at ZHAW used as research and training lab. In: 3rd Conference with International Participation, Conference VIVUS – on Agriculture, Environmentalism, Horticulture and Floristics, Food Production and Processing and Nutrition »Transmission of Innovations, Knowledge and Practical Experience into Everyday Practice«, 14th and 15th November 2014, Biotechnical Centre Naklo, Strahinj 99, Naklo, Slovenia: 245–255Google Scholar
  25. Gumble J (2015) Green towers: production and financial analyses of urban agricultural systems. Master thesis Pennsylvania State University. The Graduate School College of Agricultural Sciences: 110 pGoogle Scholar
  26. Gunning D, Harman L, Keily M, Nunan R, Jones P, Horgan B, Burnell G (2014) Designing a marine aquaponics (maraponics) system to model IMTA. In Proceedings of the Aquaculture Europe Conference 2014, San Sebastian, Spain, 14–17 October 2014; Available online: Accessed on 13 Sept 2016
  27. Gunning D, Maguire J, Burnell G (2016) The development of sustainable saltwater-based food production systems: a review of established and novel concepts. Water 8(12):598. CrossRefGoogle Scholar
  28. Herde L, Wild M (2015) Aquaponik in Rostock. Zukunftsmusik im Glashaus. DEGA. Gartenbauwissenschaft 12:45–48 [in German]Google Scholar
  29. Horváth L, Tamás G, Seagrave C (2002) Carp and pond fish culture. Second Edition. Including chinese herbivorous species, pike, tench, zander, wels catfish, goldfish, african catfish and sterlet. Fishing News Books, Blackwell Science, p 170Google Scholar
  30. INAPRO (2017) Innovative aquaponics for professional application.
  31. Junge R, König B, Villarroel M, Komives T, Jijakli MH (2017) Strategic points in aquaponics. Water 9(3):182. CrossRefGoogle Scholar
  32. Kalantari F, Tahir OM (2016) Public acceptance of vertical farming in urban high-density area of Kuala Lumpur. SelectedWorks. Faculty of Design and Architecture, University Putra Malaysia, 43300 Serdang, Malaysia: 44 pGoogle Scholar
  33. Kangmin L (1988) Rice-fish culture in China: a review. Aquaculture 71(3):173–186. CrossRefGoogle Scholar
  34. Karimanzira D, Keesman KJ, Kloas W, Baganz D, Rauschenbach T (2016) Dynamic modeling of the INAPRO aquaponic system. Aquac Eng 75:29–45. CrossRefGoogle Scholar
  35. Klemenčič AK, Bulc TG (2015) The use of vertical constructed wetland and ultrasound in aquaponic systems. Environ Sci Pollut Res 22(2):1420–1430. CrossRefGoogle Scholar
  36. Kloas W, Rennert B, Van Ballegooy C, Drews M (2012) Aquaponic system for vegetable and fish production. U.S. Pat. No. 8,291,640 B2. Washington 2012, DC: U.S. Patent and Trademark OfficeGoogle Scholar
  37. Kloas W, Groß R, Baganz D, Graupner J, Monsees H, Schmidt U, Staaks G, Suhl J, Tschirner M, Wittstock B, Wuertz S, Zikova A, Rennert B (2015) A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts. Aquac Environ Interact 7(2):179–192. CrossRefGoogle Scholar
  38. Knaus U, Palm HW (2017a) Effects of fish biology on ebb and flow aquaponical cultured herbs in northern Germany (Mecklenburg Western Pomerania). Aquaculture 466:51–63. CrossRefGoogle Scholar
  39. Knaus U, Palm HW (2017b) Effects of the fish species choice on vegetables in aquaponics under spring-summer conditions in northern Germany (Mecklenburg Western Pomerania). Aquaculture 473:62–73. CrossRefGoogle Scholar
  40. Kotzen B (2012) The power of landscape: the power of the landscape architect. In: Peer Reviewed Proceedings of ECLAS 2012 Conference. The Power of Landscape at Warsaw University of Life Sciences - SGGW. Warsaw University of Life Sciences, Warsaw, pp 185–189. ISBN 9788393588404Google Scholar
  41. Kotzen B, Appelbaum S (2010) An investigation of aquaponics using brackish water resources in the Negev Desert. J Appl Aquac 22(4):297–320. CrossRefGoogle Scholar
  42. Kotzen B, Khandaker M (2017) The potential for combining living wall and vertical farming systems in aquaponics. European Aquaculture Society Conference 2017 Meeting abstract, 17-20 October 2017, Dubrovnik, EAS Oostende, Belgium.
  43. Lennard WA (2015) AQUAPONICS: a nutrient dynamic process and the relationship to fish feeds. World aquaculture society September, 2015: 20–23Google Scholar
  44. Lennard WA, Leonard BV (2004) A comparison of reciprocating flow versus constant flow in an integrated, gravel bed, aquaponic test system. Aquac Int 12(6):539–553. CrossRefGoogle Scholar
  45. Lennard WA, Leonard BV (2006) A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an Aquaponic test system. Aquac Int 14(6):539–550. CrossRefGoogle Scholar
  46. Lewis WM, Yopp JH, Schramm Jr HL, Brandenburg AM (1978) Use of hydroponics to maintain quality of recirculated water in a fish culture system. Trans Am Fish Soc 107(1):92–99.<92:UOHTMQ>2.0.CO;2 CrossRefGoogle Scholar
  47. Little D, Muir J (1987) A guide to integrated warm water aquaculture. Institute of Aquaculture, Stirling ISBN 0-901636-71-1. 238 pGoogle Scholar
  48. Love DC, Fry JP, Li X, Hill ES, Genello L, Semmens K, Thompson RE (2015a) Commercial aquaponics production and profitability: findings from an international survey. Aquaculture 435:67–74. CrossRefGoogle Scholar
  49. Love DC, Uhl MS, Genello L (2015b) Energy and water use of a small-scale raft aquaponics system in Baltimore, Maryland, United States. Aquac Eng 68:19–27. CrossRefGoogle Scholar
  50. Lu J, Li X (2006) Review of rice–fish-farming systems in China—one of the globally important ingenious agricultural heritage systems (GIAHS). Aquaculture 260(1):106–113. CrossRefGoogle Scholar
  51. Malcolm J (2007) The start of an obsession. Backyard aquaponics magazine, issue 1, Summer 2007: 10–17Google Scholar
  52. McMurtry MR, Nelson PV, Sanders DC, Hodges L (1990) Sand culture of vegetables using recirculated aquacultural effluents. Appl Agric Res 5(4):280–284Google Scholar
  53. McMurtry MR, Sanders DC, Cure JD, Hodson RG, Haning BC, Amand ECS (1997) Efficiency of water use of an integrated fish/vegetable co-culture system. J World Aquac Soc 28(4):420–428. CrossRefGoogle Scholar
  54. Morgenstern R, Biernatzki R, Boelhauve M, Braun J, Dapprich P, Gerlach A, Haberlah-Korr V, Mergenthaler M, Mistele B, Schuster C, Winkler P, Wittmann M, Lorleberg W (2016) Pilotstudie “Nachhaltige Aquaponik-Erzeugung für Nordrhein-Westfalen”. Forschungsbericht des Fachbereichs Agrarwirtschaft Soest und des Instituts für Green Technology und Ländliche Entwicklung. 100 p [in German]Google Scholar
  55. Mukherjee TK, Geeta S, Rohani A, Phang SM (1992) A study on integrated duck-fish and goat-fish production systems. In: Mukherjee TK, Moi PS, Panandam JM, Yang YS (1992) Integrated livestock-fish production systems. Proceedings. In FAO/IPT Workshop on Integrated Livestock-Fish Production Systems, Kuala Lumpur (Malaysia), 16-20 Dec 1991Google Scholar
  56. Naegel LCA (1977) Combined production of fish and plants in recirculating water. Aquaculture 10(1):17–24. CrossRefGoogle Scholar
  57. Palm HW, Seidemann R, Wehofsky S, Knaus U (2014a) Significant factors influencing the economic sustainability of closed aquaponic systems. Part I: system design, chemo-physical parameters and general aspects. AACL Bioflux 7(1):20–32Google Scholar
  58. Palm HW, Bissa K, Knaus U (2014b) Significant factors affecting the economic sustainability of closed aquaponic systems. Part II: fish and plant growth. AACL Bioflux 7(3):162–175Google Scholar
  59. Palm HW, Nievel M, Knaus U (2015) Significant factors affecting the economic sustainability of closed aquaponic systems. Part III: plant units. AACL Bioflux 8(1):89–106Google Scholar
  60. Palm HW, Strauch S, Knaus U, Wasenitz B (2016) Das FischGlasHaus – eine Innovationsinitiative zur energie und nährstoffeffizienten Produktion unterschiedlicher Fisch- und Pflanzenarten in Mecklenburg-Vorpommern (“Aquaponik in MV”). Fisch Fischmarkt Mecklenburg-Vorpommern 1:38–47 [in German]Google Scholar
  61. Palm HW, Unger P, Kleinertz S, Wasenitz B, Mann G (2017) Baltic IMTA – Verfahrensentwicklung einer Integrierten Multi Trophischen Aquakultur für die Küstengewässer Mecklenburg-Vorpommerns (Teil 4). Fisch Fischmarkt Mecklenburg-Vorpommern 2(2017):45–48 [in German]Google Scholar
  62. Pantanella E (2008) Pond aquaponics: new pathways to sustainable integrated aquaculture and agriculture. Aquaculture News 34, May 2008Google Scholar
  63. Pattillo DA (2017) An overview of aquaponic systems: hydroponic components. NCRAC Technical Bulletins 19.
  64. Perez G, Rincon L, Vila A, Gonzalez JM, Cabeza LF (2011) Green vertical systems for buildings as passive systems for energy savings. Appl Energy 88(12):4854–4859. CrossRefGoogle Scholar
  65. Perini K, Ottelé M, Haas EM, Raiteri R (2013) Vertical greening systems, a process tree for green façades and living walls. Urban Ecosyst 16(2):265–277. CrossRefGoogle Scholar
  66. Rakocy JE (1989) Hydroponic lettuce production in a recirculating fish culture system. Univ. Virgin Islands Agric. Exp. Station, Island Perspect 3: 5–10Google Scholar
  67. Rakocy JE (2012) Chapter 14: aquaponics–integrating fish and plant culture. In: Tidwell JH (ed) Aquaculture Production Systems, 2012, 1st edn. Wiley, Hoboken, 343–386Google Scholar
  68. Rakocy JE, Masser MP, Losordo TM (2006) Recirculating aquaculture tank production systems: aquaponics-integrating fish and plant culture. SRAC Publication - Southern Regional Aquaculture Center (454): 16 pGoogle Scholar
  69. Rakocy JE, Bailey DS, Shultz RC, Danaher JJ (2010) The status of aquaponics–2010. World Aquac Soc 2010Google Scholar
  70. Raviv M, Lieth JH (2008) Soilless culture: theory and practice. Elsevier, Amsterdam ISBN: 978-0-444-52975-6. 587 pGoogle Scholar
  71. Roy M, Salam M, Hossain MB, Shamsuddin M (2013) Feasibility study of aquaponics in polyculture pond. World Appl Sci J 23:588–592Google Scholar
  72. Salam MA, Asadujjaman M, Rahman MS (2013) Aquaponics for improving high density fish pond water quality through raft and rack vegetable production. World 5(3):251–256Google Scholar
  73. Savidov N (2004) Evaluation and development or aquaponics production and product market capabilities in Alberta. Ids Initiatives Fund Final Report Project #679056201, August 17, 2004. Alberta Agric Food Rural Dev 190 pGoogle Scholar
  74. Schmautz Z, Graber A, Jaenicke S, Goesmann A, Junge R, Smits TH (2016) Microbial diversity in different compartments of an aquaponics system. Arch Microbiol:1–8Google Scholar
  75. Scott JO (2009) A living tower: using architecture for sustainable future growth. Doctoral dissertation, University of Cape Town: 75 pGoogle Scholar
  76. Sikawa DC, Yakupitiyage A (2010) The hydroponic production of lettuce (Lactuca sativa L) by using hybrid catfish (Clarias macrocephalus x C. gariepinus) pond water: potentials and constraints. Agric Water Manag 97(9):1317–1325. CrossRefGoogle Scholar
  77. Simeonidou M, Paschos I, Gouva E, Kolygas M, Perdikaris C (2012) Performance of a small-scale modular aquaponic system. AACL Bioflux 5(4):182–188Google Scholar
  78. Sneed K, Allen K, Ellis JE (1975) Fish farming and hydroponics. Aquaculture and the fish farmer 1(1):11–18Google Scholar
  79. Somerville C, Cohen M, Pantanella E, Stankus A, Lovatelli A (2014) Small-scale aquaponic food production. Integrated fish and plant farming. FAO Fisheries and Aquaculture Technical Paper No. 589 2014. Rome, FAO: 262 pGoogle Scholar
  80. Soto D (2009) Integrated mariculture: a global review. FAO Fisheries and Aquaculture Technical Paper. No. 529. FAO, Rome, 183pGoogle Scholar
  81. Stadler M, Baganz D, Vermeulen T, Keesman KJ (2015) Circular economy and economic viability of aquaponic systems: Comparing urban, rural and peri-urban scenarios under Dutch conditions. Proceedings of the ICESC 2015, Gold Coast, AustraliaGoogle Scholar
  82. Stickney RR (1994) Principles of aquaculture. Wiley, Hoboken 502 pGoogle Scholar
  83. Suhl J, Dannehl D, Kloas W, Baganz D, Jobs S, Scheibe G, Schmidt U (2016) Advanced aquaponics: evaluation of intensive tomato production in aquaponics vs. conventional hydroponics. Agric Water Manag 178:335–344. CrossRefGoogle Scholar
  84. Thorarinsdottir RI, Kledal PR, Skar SLG, Sustaeta F, Ragnarsdottir KV, Mankasingh U, Pantanella E, van de Ven R, Shultz RC (2015) Aquaponics guidelines 2015. 64 pGoogle Scholar
  85. Tilman D, Clark M (2014) Global diets link environmental sustainability and human health. Nature 515(7528):518–522. CrossRefPubMedGoogle Scholar
  86. Troell M, Halling C, Neori A, Chopin T, Buschmann AH, Kautsky N, Yarish C (2003) Integrated mariculture: asking the right questions. Aquaculture 226(1-4):69–90. CrossRefGoogle Scholar
  87. Troell M, Joyce A, Chopin T, Neori A, Buschmann AH, Fang J-G (2009) Ecological engineering in aquaculture — potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297(1-4):1–9. CrossRefGoogle Scholar
  88. Tyson RV, Simonne EH, Treadwell DD, White JM, Simonne A (2008) Reconciling pH for ammonia biofiltration and cucumber yield in a recirculating aquaponic system with perlite biofilters. Hortscience 43(3):719–724Google Scholar
  89. Urban Farmers (2017) UrbanFarmers, Technoparkstrasse 1 8005 Zürich, Switzerland.
  90. Vermeulen T, Kamstra A (2012) The need for systems design for robust aquaponic systems in the urban environment. In: International Symposium on Soilless Cultivation 1004: 71–77Google Scholar
  91. Villarroel M, Alvariño JMR, Duran JM (2011) Aquaponics: integrating fish feeding rates and ion waste production for strawberry hydroponics. Span J Agric Res 9(2):537–545. CrossRefGoogle Scholar
  92. Waller U, Buhmann AK, Ernst A, Hanke V, Kulakowski A, Wecker B, Orellana J, Papenbrock J (2015) Integrated multi-trophic aquaculture in a zero-exchange recirculation aquaculture system for marine fish and hydroponic halophyte production. Aquac Int 23(6):1473–1489. CrossRefGoogle Scholar
  93. Watten BJ, Busch RL (1984) Tropical production of tilapia (Sarotherodon aurea) and tomatoes (Lycopersicon esculentum) in a small-scale recirculating water system. Aquaculture 41(3):271–283. CrossRefGoogle Scholar
  94. Wilson G (2015) Wilson’s cities alive. Aquaponics network Australia 1(1):1–8Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Harry W. Palm
    • 1
    Email author
  • Ulrich Knaus
    • 1
  • Samuel Appelbaum
    • 2
  • Simon Goddek
    • 3
  • Sebastian M. Strauch
    • 1
  • Tycho Vermeulen
    • 4
  • M. Haїssam Jijakli
    • 5
  • Benz Kotzen
    • 6
  1. 1.Faculty of Agricultural and Environmental Sciences, Department of Aquaculture and Sea-RanchingUniversity of RostockRostockGermany
  2. 2.French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert ResearchBen-Gurion University of the NegevBeershebaIsrael
  3. 3.Biobased Chemistry & TechnologyWageningen UniversityWageningenThe Netherlands
  4. 4.Safi SanaWeespThe Netherlands
  5. 5.Gembloux Agro Bio Tech, Integrated and Urban Plant PathologyUniversity of LiègeLiègeBelgium
  6. 6.Department of Architecture and LandscapeUniversity of GreenwichLondonUK

Personalised recommendations