Aquaculture International

, Volume 25, Issue 5, pp 1787–1797 | Cite as

Diet supplemented with Grifola gargal mushroom enhances growth, lipid content, and nutrient retention of juvenile rainbow trout (Oncorhynchus mykiss)

  • Mariano M. Pascual
  • Juan P. Hualde
  • Virginia A. Bianchi
  • Juan M. Castro
  • Carlos M. Luquet
Article

Abstract

This study examined the suitability of the edible mushroom Grifola gargal as a dietary supplement for juvenile rainbow trout (Oncorhynchus mykiss). Three treatments were established in triplicate using 50 fish (0.33 ± 0.01 g) held in 50-L containers. Treatments consisted of feeds (42–45% protein, ca. 18% lipid) supplemented with fruiting-bodies of G. gargal at 0 g kg−1 (control diet (CTRL)), 25 g kg−1 (GG25), or 100 g kg−1 (GG100). Fish were hand-fed to apparent satiation twice a day (except on Sundays) for 56 days. Feed intake and growth were recorded throughout the study, and fish body proximate composition and nutrient retention were assessed at the end of the trial. Fish given GG25 diet had better growth and feed utilization than those given the other feeds. Final body weight was 2.37 ± 0.04 g (CTRL), 4.07 ± 0.07 g (GG25), and 1.94 ± 0.06 g (GG100) and the thermal-unit growth coefficient increased significantly from 0.64 ± 0.01 in CTRL to 0.87 ± 0.01 in GG25. The feed efficiency and the protein efficiency ratio were best for fish fed GG25, and body lipid was 42.3 ± 2.6 g kg−1 in CTRL and 75.3 ± 1.5 g kg−1 in GG25 treatments. This coincided with a lower viscerosomatic index in the fish given GG25 than in those provided with the other feeds. These results suggest that dietary supplementation with G. gargal at 25 g kg−1 enhances growth and leads to improved feed utilization in small rainbow trout.

Keywords

Edible mushrooms Feed ingredients Fungi Nutrition Salmonids 

References

  1. AOAC (1990) Official methods of analysis of AOAC, 15th edn. AOAC International, ArlingtonGoogle Scholar
  2. Baba E, Uluköy G, Önta C (2015) Effects of feed supplemented with Lentinula edodes mushroom extract on the immune response of rainbow trout, Oncorhynchus mykiss, and disease resistance against Lactococcus garvieae. Aquaculture 448:476–482CrossRefGoogle Scholar
  3. Bervoets L, Van Campenhout K, Reynders H et al (2009) Bioaccumulation of micropollutants and biomarker responses in caged carp (Cyprinus carpio). Ecotox Environ Safe 72:720–728CrossRefGoogle Scholar
  4. Bilen S, Ünal S, Güvensoy H (2016) Effects of oyster mushroom (Pleurotus ostreatus) and nettle (Urtica dioica) methanolic extracts on immune responses and resistance to Aeromonas hydrophila in rainbow trout (Oncorhynchus mykiss). Aquaculture 454:90–94CrossRefGoogle Scholar
  5. Chang C, Huang SL, Chen S, Chen SN (2013) Innate immune responses and efficacy of using mushroom β-glucan mixture on orange-spotted grouper, Epinephelus coioides, aquaculture. Fish Shellfish Immun 35:115–125CrossRefGoogle Scholar
  6. Chien L, Hwang D (2001) Effects of thermal stress and vitamin C on lipid peroxidation and fatty acid composition in the liver of thornfish Terapon jarbua. Comp Biochem Phys B 128:91–97CrossRefGoogle Scholar
  7. Cohen N, Cohen J, Asatiani MD et al (2014) Chemical composition and nutritional and medicinal value of fruit bodies and submerged cultured mycelia of culinary-medicinal higher Basidiomycetes mushrooms. Int J Med Mushrooms 16:273–291CrossRefPubMedGoogle Scholar
  8. Danell E, Eaker D (1992) Amino acid and total protein content of the edible mushroom Cantharellus cibarius (Fries). J Sci Food Agric 60:333–337CrossRefGoogle Scholar
  9. De Bruijn J, Loyola C, Aqueveque P et al (2008) Influence of heat treatment on the antioxidant properties of Grifola gargal hydro-alcoholic extracts. Micol Apl Int 1:27–34Google Scholar
  10. De Bruijn J, Loyola C, Aqueveque P et al (2009) Antioxidant properties of extracts obtained from Grifola gargal mushrooms. Micol Apl Int 21:11–18Google Scholar
  11. Djordjevic B, Skugor S, Jørgensen SM et al (2009) Modulation of splenic immune responses to bacterial lipopolysaccharide in rainbow trout (Oncorhynchus mykiss) fed lentinan, a β-glucan from mushroom Lentinula edodes. Fish Shellfish Immun 26:201–209CrossRefGoogle Scholar
  12. Dobsíková R, Blahová J, Mikulíková I et al (2013) The effect of oyster mushroom β-1.3/1.6-D-glucan and oxytetracycline antibiotic on biometrical, haematological, biochemical, and immunological indices, and histopathological changes in common carp (Cyprinus carpio L). Fish Shellfish Immun 35:1813–1823CrossRefGoogle Scholar
  13. Dumas A, France J, Bureau DP (2007) Evidence of three growth stanzas in rainbow trout (Oncorhynchus mykiss) across life stages and adaptation of the thermal-unit growth coefficient. Aquaculture 267:139–146CrossRefGoogle Scholar
  14. FAO (2012) The state of world fisheries and aquaculture. Food and Agriculture Organization of the United Nations, Rome, p 209Google Scholar
  15. FAO (2016) The state of world fisheries and aquaculture. Food and Agriculture Organization of the United Nations, Rome, p 200Google Scholar
  16. Glencross B, Booth M, Allan GL (2007) A feed is only as good as its ingredients—a review of ingredient evaluation strategies for aquaculture feeds. Aquac Nutr 13:17–34CrossRefGoogle Scholar
  17. Harada E, D’Alessandro-Gabazza CN, Toda M et al (2015a) Amelioration of atherosclerosis by the new medicinal mushroom Grifola gargal Singer. J of med food 00:1–10Google Scholar
  18. Harada E, Morizono T, Sumiya T, Meguro S (2015b) Production of Andean-Patagonic edible mushroom Grifola gargal on wood-based substrates. Mycoscience 56:616–621CrossRefGoogle Scholar
  19. Hardy R (2002) Rainbow trout Oncorhynchus mykiss. In: Webster CD, Lim CE (eds) Nutrient requirements and feeding of finfish for aquaculture. CABI Publishing, New York, pp 184–202CrossRefGoogle Scholar
  20. Hoffman J, Falvo M (2004) Protein—which is best? J Sports Sci Med 3:118–130PubMedPubMedCentralGoogle Scholar
  21. Ito T, Kato M, Tsuchida H et al (2011) Ergothioneine as an anti-oxidative/anti-inflammatory component in several edible mushrooms. Food Sci Technol Res 17:103–110CrossRefGoogle Scholar
  22. Kalac P (2009) Chemical composition and nutritional value of European species of wild growing mushrooms: a review. Food Chem 113:9–16CrossRefGoogle Scholar
  23. Kamilya D, Ghosh D, Bandyopadhayay S et al (2006) In vitro effects of bovine lactoferrin, mushroom glucan and Abrus agglutinin on Indian major carp, catla (Catla catla) head kidney leukocytes. Aquaculture 253:130–139CrossRefGoogle Scholar
  24. Katya K, Yun Y, Park G et al (2014) Evaluation of the efficacy of fermented by-product of mushroom, Pleurotus ostreatus, as a fish meal replacer in juvenile Amur catfish, Silurus asotus: effects on growth, serological characteristics and immune responses. Asian Austral J Anim Sci 27:1478–1486CrossRefGoogle Scholar
  25. Kiron V (2012) Fish immune system and its nutritional modulation for preventive health care. Animal Feed Sci Tech 173:111–133CrossRefGoogle Scholar
  26. Liu Y, Du J, Cao L et al (2015) Anti-inflammatory and hepatoprotective effects of Ganoderma lucidum polysaccharides on carbon tetrachloride-induced hepatocyte damage in common carp (Cyprinus carpio). Int Immunopharmacol 25:112–120CrossRefPubMedGoogle Scholar
  27. Manayi A, Vazirian M, Zade FH, Tehranifard A (2016) Immunomodulation effect of aqueous extract of the artist’s conk medicinal mushroom, Ganoderma applanatum (Agaricomycetes), on the rainbow trout (Oncorhynchus mykiss). Int J Med Mushrooms 18:927–933CrossRefPubMedGoogle Scholar
  28. Morales AE, García-Rejón L, De La Higuera M (1990) Influence of handling and/or anaesthesia on stress response in rainbow trout. Effects on liver primary metabolism. Comp Biochem Phys A 95:87–93CrossRefGoogle Scholar
  29. Mostak A, Abdullah N, Shuib A et al (2015) Improvement of growth and antioxidant status in Nile tilapia, Oreochromis niloticus, fed diets supplemented with mushroom stalk waste hot water extract. Aquac Res 48:1146–1157Google Scholar
  30. Muin H, Taufek N, Abiodun R et al (2015) Effect of partial and complete replacement of fishmeal with mushroom stalk meal and soy bean meal on growth performance of Nile tilapia Oreochromis niloticus fingerlings. Sains Malays 44:511–516CrossRefGoogle Scholar
  31. Nikl L, Albright LJ, Evelyn T (1991) Influence of seven immunostimulants on the immune response of Coho salmon to Aeromonas salmonicida. Dis Aquat Org 12:7–12CrossRefGoogle Scholar
  32. NRC (National Research Council) (1993) Nutrient requirements of fish. The National Academies Press, Washington DCGoogle Scholar
  33. Paripuranam T, Divya V, Ulaganathan P et al (2011) Replacing fish meal with earthworm and mushroom meals in practical diets of Labeo rohita and Hemigrammus caudovittatus fingerlings. Indian J Anim Res 45:115–119Google Scholar
  34. Pearce J, Harris JE, Davies SJ (2003) The effect of vitamin E on the serum complement activity of the rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac Nutr 9:337–340CrossRefGoogle Scholar
  35. Postemsky PD, Curvetto NR (2014) Enhancement of wheat grain antioxidant activity by solid state fermentation with Grifola spp. J Med F 17:543–549CrossRefGoogle Scholar
  36. Postemsky PD, Curvetto NR (2015) Submerged culture of Grifola gargal and G. sordulenta (higher Basidiomycetes) from Argentina as source of mycelia with antioxidant activity. Int J Med Mushrooms 17:65–76CrossRefPubMedGoogle Scholar
  37. Postemsky PD, Palermo A, Curvetto NR (2011) Protective effects of new medicinal mushroom, Grifola gargal (higher Basidiomycetes) on induced DNA damage in somatic cells of Drosophila melanogaster. Int J Med Mushrooms 13:583–594CrossRefPubMedGoogle Scholar
  38. Puangkaew J, Kiron V, Satoh S, Watanabe T (2005) Antioxidant defense of rainbow trout in relation to dietary n-3 highly unsaturated fatty acids and vitamin E contents. Comp Biochem Phys C 140:187–196CrossRefGoogle Scholar
  39. Rajchenberg M (2002) The genus Grifola (Aphyllophorales, Basidiomycota) in Argentina revisited. Bol Soc Argent Bot 37:19–27Google Scholar
  40. Sartori SB, Ferreira LF, Messias TG et al (2015) Pleurotus biomass production on vinasse and its potential use for aquaculture feed. Mycology 6:28–34CrossRefPubMedGoogle Scholar
  41. Schmeda-Hirschmann G, Razmilic I, Gutierrez M, Loyola J (1999) Proximate composition and biological activity of food plants gathered by chilean amerindians. Econ Bot 53:177–187CrossRefGoogle Scholar
  42. Soengas JL, Otero J, Fuentes J et al (1991) Preliminary studies on carbohydrate metabolism changes in domesticated rainbow trout (Oncorhynchus mykiss) transferred to diluted seawater (12 ppt). Comp Biochem Phys B 98:53–57CrossRefGoogle Scholar
  43. Stamets P, Zwickey H (2014) Medicinal mushrooms: ancient remedies meet modern science. Integrative Med Clin J 13:46–47Google Scholar
  44. Toledo C, Barroetaveña C, Fernandes A et al (2016) Chemical and antioxidant properties of wild edible mushrooms from native Nothofagus spp. Forest, Argentina. Molecules 21:1201–1216CrossRefGoogle Scholar
  45. Van Doan H, Doolgindachbaporn S, Suksri A (2016) Effects of Eryngii mushroom (Pleurotus eryngii) and Lactobacillus plantarum on growth performance, immunity and disease resistance of Pangasius catfish (Pangasius bocourti, Sauvage 1880). Fish Phys Biochem 42:1427–1440CrossRefGoogle Scholar
  46. Van Handel E (1965) Estimation of glycogen in small amounts of tissue. Anal Biochem 11:256–265CrossRefPubMedGoogle Scholar
  47. Vijayan MM, Moon TW (1992) Acute handling stress alters hepatic glycogen metabolism in food deprived rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci 49:2260–2266CrossRefGoogle Scholar
  48. Wani B, Bodha R, Wani (2010) Nutritional and medicinal importance of mushrooms. J Med Plant Res 4:2598–2604CrossRefGoogle Scholar
  49. Wasser SP (2014) Medicinal mushroom science: current perspectives, advances, evidences, and challenges. Biom J 37:354–356Google Scholar
  50. Wolf J, Wolfe M (2005) A brief overview of nonneoplastic hepatic toxicity in fish. Toxicol Pathol 33:75–85CrossRefPubMedGoogle Scholar
  51. Woynarovich A, Hoitsy G, Moth-Poulsen T (2011) Small-scale rainbow trout farming. FAO Fisheries and Aquaculture Technical Paper No. 561. Food and Agriculture Organization of the United Nations, Rome, p 81Google Scholar
  52. Yin G, Ardó L, Thompson KD et al (2009) Chinese herbs (Astragalus radix and Ganoderma lucidum) enhance immune response of carp Cyprinus carpio, and protection against Aeromonas hydrophila. Fish Shellfish Immun 26:140–145CrossRefGoogle Scholar
  53. Zar JH (1999) Biostatistical analysis. Prentice Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Mariano M. Pascual
    • 1
  • Juan P. Hualde
    • 2
  • Virginia A. Bianchi
    • 3
  • Juan M. Castro
    • 1
  • Carlos M. Luquet
    • 1
  1. 1.Laboratorio de Ecotoxicología Acuática, INIBIOMA (CONICET-UNCo)CEANNeuquénArgentina
  2. 2.Laboratorio de Nutrición de PecesCEANNeuquénArgentina
  3. 3.Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del COMAHUE (CITAAC)CONICET–Universidad Nacional del ComahueNeuquénArgentina

Personalised recommendations