Skip to main content
Log in

Feminization strategies in crustacean aquaculture

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Crustacean aquaculture production has developed rapidly in recent years because there has been an increase in crustacean market demands in different regions of the world. The growth rate of the most cultured crustacean species depends on genders. Therefore, monosex crustacean aquaculture, all male or all female, is more suitable for achieving higher yields, with the ecological benefits of reducing the risk of cannibalism. In addition, feminization is also appropriate for increasing individual number in populations because males are able to copulate with more females. For this reason, sexual manipulations are important in crustacean reproduction units. This review focuses on the sex differentiation mechanism and the use of different strategies for feminization of economically important crustaceans. In this review, feminization strategies are divided into two main methods: direct feminization and indirect feminization (masculinization). Direct feminization includes (1) ablation of androgenic gland (AG), (2) silencing and suppression AG and androgenic gland hormones (AGHs), (3) hormone therapy (i.e., 17β-estradiol), and (4) polyploidy induction. This review also emphasizes how feminization is carried out for crustaceans belonging to the different sex determination systems (ZW or XY) by using indirect method. The intension of controlling sexual differentiation for crustaceans will continue to increase in the next a few years, either for basic research or for its utilization to crustacean aquaculture; hence, this review will be profitable for crustacean farmers and researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adiyodi R (1984) Seasonal changes and the role of eyestalks in the activity of the androgenic gland of the crab, Paratelphusa hydrodromous (Herbst). Comp Physiol Ecol 9:427–431

    Google Scholar 

  • Aflalo E, Hoang T, Nguyen V et al (2006) A novel two-step procedure for mass production of all-male populations of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture 256:468–478

    Article  Google Scholar 

  • Aktas M, Gene MA (2011) The effects of 17 ß-estradiol on growth, survival and feminization of green Tiger shrimp, P. semisulcatus (Decapoda: Penaeidae). J Anim Vet Adv 10:562–565

    Article  CAS  Google Scholar 

  • Baghel DS, Lakra WS, Satyanarayana Rao GP (2004) Altered sex ratio in giant fresh water prawn, Macrobrachium rosenbergii (de Man) using hormone bioencapsulated live Artemia feed. Aqua Res 35:943–947

    Article  Google Scholar 

  • Barki A, Karplus I, Manor R et al (2006) Intersexuality and behavior in crayfish: the de-masculinization effects of androgenic gland ablation. Horm Behav 50:322–331

    Article  CAS  PubMed  Google Scholar 

  • Burns BO, Sangalang GD, Freeman HC et al (1984) Isolation and identification of testosterone from serum and testes of American lobster (Homarus americanus). Gen Comp Endocrinol 54:429–432

    Article  CAS  PubMed  Google Scholar 

  • Campos-Ramos R, Garza-Torres R, Guerrero-Tortolero DA et al (2006) Environmental sex determination, external sex differentiation and structure of the androgenic gland in the Pacific white shrimp Litopenaeus vannamei (Boone). Aquac Res 37:1583–1593

    Article  Google Scholar 

  • Celada J, Antolín J, Carral J et al (2005) Successful sex ratio of 1M: 4F in the astacid crayfish Pacifastacus leniusculus Dana under captive breeding conditions. Aquaculture 244:89–95

    Article  Google Scholar 

  • Chamiaux-Cotton H (1960) Sex determination. In: Waterman TH (ed) Metabolism and growth. Academic Press, New York, pp 301–356

    Google Scholar 

  • Charniaux-Cotton H, Payen G (1985) Sexual differentiation. In: Bliss DE, Mantel LH (eds) Integument, Pigments, and Hormonal Processes. Academic Press, New York, pp 290–330

    Google Scholar 

  • Charniaux-Cotton H (1954) Découverte chez un Crustacé Amphipode (Orchestia gammarella) d’une glande endocrine responsable de la differenciation des caractéres sexuels primaires et secondaires males. C R Hebd Seanc Acad 239:780–782

    CAS  Google Scholar 

  • Chung JS, Manor R, Sagi A (2011) Cloning of an insulin-like androgenic gland factor (IAG) from the blue crab, Callinectes sapidus: implications for eyestalk regulation of IAG expression. Gen Comp Endocrinol 173:4–10

    Article  CAS  PubMed  Google Scholar 

  • Coman FC, Sellars MJ, Norris B et al (2008) The effects of triploidy on Penaeus (Marsupenaeus) japonicus (Bate) survival, growth and gender when compared to diploid siblings. Aquaculture 276:50–59

    Article  Google Scholar 

  • Couch EF, Hagino N, Lee JW (1987) Changes in estradiol and progesterone immunoreactivity in tissues of the lobster (Homarus americanus) with developing and immature ovaries. Comp Biochem Physiol A 87:765–770

    Article  Google Scholar 

  • Cronin LE (1947) Anatomy and histology of the male reproductive system of Callinectes sapidus Rathbun. J Morphol 81:209–239

    Article  CAS  PubMed  Google Scholar 

  • FAO (2014a) The state of world fisheries and aquaculture 2014. FAO, Rome, p 243

    Google Scholar 

  • FAO (2014b) FAO yearbook: fishery and aquaculture statistics 2012. Food and Agriculture Organization of the United Nations, Rome, p 614

    Google Scholar 

  • Fowler RJ, Leonard BV (1999) The structure and function of the androgenic gland in Cherax destructor (Decapoda: Parastacidae). Aquaculture 171:135–148

    Article  CAS  Google Scholar 

  • Ginsburger-Vogel T, Charniaux-Cotton H (1982) Sex determination. In: Abele LG (ed) The Biology of Crustacea. Academic Press, Orlando, pp pp257–pp281

    Google Scholar 

  • Gopal C, Gopikrishna G, Krishna G, Jahageerdar SS, Rye M, Hayes BJ, Paulpandi S, Kiran RP, Pillai SM, Ravichandran P (2010) Weight and time of onset of female-superior sexual dimorphism in pond reared Penaeus monodon. Aquaculture 300:237–239

    Article  Google Scholar 

  • Gunamalai V, Kirubagaran R, Subramomam T (2006) Vertebrate steroids and the control of female reproduction in two decapod crustaceans, Emerita asiatica and Macrobrachium rosenbergii. Curr Sci 90:119–123

    CAS  Google Scholar 

  • Hackmann E, Reinboth R (1974) Delimitation of the critical stage of hormone-influenced sex differentiation in Hemihaplochromis multicolor (Hilgendorf)(Cichlidae). Gen Comp Endocrinol 22:42–53

    Article  CAS  PubMed  Google Scholar 

  • Harlioğlu MM (2016) Visibility of precursors of the gonopods in a freshwater crayfish, Astacus leptodactylus Eschscholtz, 1823 (Decapoda, Astacidae). Crustaceana 89:369–381

    Article  Google Scholar 

  • Harlıoğlu MM, Yonar ME, Harlıoğlu AG et al. (2016) Effects of different methods and times of 17β-estradiol treatment on the feminization success in the narrow clawed crayfish Astacus leptodactylus (Eschscholtz, 1823) (unpublished data, under consideration)

  • Hasegawa Y, Haino-Fukushima K, Katakura Y (1987) Isolation and properties of androgenic gland hormone from the terrestrial isopod, Armadillidium vulgare. Gen Comp Endocrinol 67:101–110

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa Y, Hirose E, Katakura Y (1993) Hormonal control of sexual differentiation and reproduction in Crustacea. Am Zool 33:403–411

    Article  CAS  Google Scholar 

  • Hoffman DL (1968) Seasonal eyestalk inhibition on the androgenic glands of a protandric shrimp. Nature 218:170–172

    Article  Google Scholar 

  • Katakura Y (1989) Endocrine and genetic control of sex differentiation in the malacostracan Crustacea. Invertebr Reprod Dev 16:177–181

    Article  Google Scholar 

  • Katayama H (2015) Androgenic Gland Hormone. In: Takei Y, Ando H, Tsutsui K (eds) Handbook of Hormones: Comparative Endocrinology for Basic and Clinical Research, Academic Press, p 377

  • Kato M, Hiruta C, Tochinai S (2015) Androgenic gland implantation induces partial masculinization in Marmorkrebs Procambarus fallax f. virginalis. Zool Sci 32:459–464

    Article  PubMed  Google Scholar 

  • Khalaila I, Manor R, Weil S et al (2002) The eyestalk–androgenic gland–testis endocrine axis in the crayfish Cherax quadricarinatus. Gen Comp Endocrinol 127:147–156

    Article  CAS  PubMed  Google Scholar 

  • Kim D-H, Jo Q, Kim B-K et al (2002) Eyestalk ablation-induced androgenic gland activity and gonad development in the freshwater prawns Macrobrachium nipponense (De Haan, 1849). Invertebr Reprod Dev 42:35–42

    Article  Google Scholar 

  • Lafont R, Mathieu M (2007) Steroids in aquatic invertebrates. Ecotoxicology 16(1):109–130

    Article  CAS  PubMed  Google Scholar 

  • Lee T-H, Yamauchi M, Yamazaki F (1994) Sex differentiation in the crab Eriocheir japonicus (Decapoda, Grapsidae). Invertebr Reprod Dev 25:123–137

    Article  Google Scholar 

  • Li F, Xiang J, Zhang X et al (2003) Gonad development characteristics and sex ratio in triploid Chinese shrimp Fenneropenaeus chinensis. Mar Biotechnol 5(6):528–535

    Article  CAS  PubMed  Google Scholar 

  • Lisk RD (1961) Estradiol-17β in the eggs of the American lobster, Homarus americanus. Can J Biochem Phys 39:659–662

    Article  CAS  Google Scholar 

  • Malati EF, Heidari B, Zamani M (2013) The variations of vertebrate-type steroid hormones in the freshwater narrow-clawed crayfish Astacus leptodactylus (Eschscholtz, 1823)(Decapoda, Astacidae) during oocyte development. Crustaceana 86:129–138

    Article  Google Scholar 

  • Malecha SR, Nevin PA, Ha P et al (1992) Sex-ratios and sex-determination in progeny from crosses of surgically sex-reversed freshwater prawns, Macrobrachium rosenbergii. Aquaculture 105:201–218

    Article  Google Scholar 

  • Manor R, Aflalo ED, Segall C et al (2004) Androgenic gland implantation promotes growth and inhibits vitellogenesis in Cherax quadricarinatus females held in individual compartments. Invertebr Reprod Dev 45:151–159

    Article  Google Scholar 

  • Manor R, Weil S, Oren S et al (2007) Insulin and gender: an insulin-like gene expressed exclusively in the androgenic gland of the male crayfish. Gen Comp Endocrinol 150:326–336

    Article  CAS  PubMed  Google Scholar 

  • Mareddy V, Rosen O, Thaggard H et al (2011) Isolation and characterization of the complete cDNA sequence encoding a putative insulin-like peptide from the androgenic gland of Penaeus monodon. Aquaculture 318:364–370

    Article  CAS  Google Scholar 

  • Martin G, Sorokine O, Moniatte M et al (1999) The structure of a glycosylated protein hormone responsible for sex determination in the isopod, Armadillidium vulgare. Eur J Biochem 262:727–736

    Article  CAS  PubMed  Google Scholar 

  • Mohamed KS, Diwan A (1991) Effect of androgenic gland ablation on sexual characters of the male Indian white prawn Penaeus indicus H. Milne Edwards. Indian J Exp Biol 29:478–480

    Google Scholar 

  • Mohanakumaran Nair C, Salin K, Raju M et al (2006) Economic analysis of monosex culture of giant freshwater prawn (Macrobrachium rosenbergii De Man): a case study. Aquac Res 37:949–954

    Article  Google Scholar 

  • Nagabhushanam R, Kulkarni GK (1981) Effect of exogenous testosterone on the androgenic gland and testis of a marine penaeid prawn, Parapenaeopsis hardwickii (Miers)(Crustacea, Decapoda, Penaeidae). Aquaculture 23:19–27

    Article  CAS  Google Scholar 

  • Nagamine C, Knight AW (1987) Induction of female breeding characteristics by ovarian tissue implants in androgenic gland ablated male freshwater prawns Macrobrachium rosenbergii (de Man)(Decapoda, Palaemonidae). Int J Inver Rep Dev 11:225–234

    Article  Google Scholar 

  • Nagamine C, Knight AW, Maggenti A et al (1980) Effects of androgenic gland ablation on male primary and secondary sexual characteristics in the Malaysian prawn, Macrobrachium rosenbergii (de Man)(Decapoda, Palaemonidae), with first evidence of induced feminization in a nonhermaphroditic decapod. Gen Comp Endocrinol 41:423–441

    Article  CAS  PubMed  Google Scholar 

  • Ohs CL, D’Abramo LR, Petrie-Hanson L et al (2006) Apparent control of sexual differentiation of freshwater prawn, Macrobrachium rosenbergii, through dietary administration of dopamine hydrochloride. J Appl Aquac 18:19–32

    Article  Google Scholar 

  • Okumura T, Hara M (2004) Androgenic gland cell structure and spermatogenesis during the molt cycle and correlation to morphotypic differentiation in the giant freshwater prawn, Macrobrachium rosenbergii. Zool Sci 21:621–628

    Article  PubMed  Google Scholar 

  • Okumura T, Nikaido H, Yoshida K et al (2005) Changes in gonadal development, androgenic gland cell structure, and hemolymph vitellogenin levels during male phase and sex change in laboratory-maintained protandric shrimp, Pandalus hypsinotus (Crustacea: Caridea: Pandalidae). Mar Biol 148:347–361

    Article  Google Scholar 

  • Okuno A, Hasegawa Y, Ohira T et al (1999) Characterization and cDNA cloning of androgenic gland hormone of the terrestrial isopod Armadillidium vulgare. Biochem Biophys Res Commun 264:419–423

    Article  CAS  PubMed  Google Scholar 

  • Ollevier F, De Clerck D, Diederick H et al (1986) Identification of nonecdysteroid steroids in hemolymph of both male and female Astacus leptodactylus (Crustacea) by gas chromatography–mass spectrometry. Gen Comp Endocrinol 61:214–218

    Article  CAS  PubMed  Google Scholar 

  • Parnes S, Khalaila I, Hulata G et al (2003) Sex determination in crayfish: are intersex Cherax quadricarinatus (Decapoda, Parastacidae) genetically females? Genet Res 82:107–116

    Article  CAS  PubMed  Google Scholar 

  • Payen G (1974) Morphogenèse sexuelle de quelques Brachyoures (Cyclométopes) au cours du développement embryonnaire, larvaire et postlarvaire. Bull Mus Hist Nat 139:201–262

    Google Scholar 

  • Piferrer F (2001) Endocrine sex control strategies for the feminization of teleost fish. Aquaculture 197:229–281

    Article  CAS  Google Scholar 

  • Piferrer F, Donaldson E (1993) Sex control in Pacific salmon. Recent Adv Aquacult 4:69–77

    Google Scholar 

  • Puckett DH (1998) Experimental studies of the crayfish androgenic gland in relation to testicular function. University Microfilms, p 87

  • Rosen O, Manor R, Weil S et al (2010) A sexual shift induced by silencing of a single insulin-like gene in crayfish: ovarian upregulation and testicular degeneration. PLoS One 5:e15281

    Article  PubMed  PubMed Central  Google Scholar 

  • Rungsin W, Swatdipong A, Na-Nakorn U (2012) Development stages of androgenic glands in Giant river prawn, Macrobrachium rosenbergii De Man, 1879 in relation to size and age, and the success rate of feminization after andrectomy in small and large size prawn. Aquaculture 354:136–143

    Article  Google Scholar 

  • Sagi A, Cohen D, Milner Y (1990) Effect of androgenic gland ablation on morphotypic differentiation and sexual characteristics of male freshwater prawns, Macrobrachium rosenbergii. Gen Comp Endocrinol 77:15–22

    Article  CAS  PubMed  Google Scholar 

  • Sagi A, Snir E, Khalaila I (1997) Sexual differentiation in decapod crustaceans: role of the androgenic gland. Invertebr Reprod Dev 31:55–61

    Article  Google Scholar 

  • Sellars MJ, Coman FE, Degnan BM et al (2006) The effectiveness of heat, cold and 6-dimethylaminopurine shocks for inducing tetraploidy in the Kuruma shrimp, Marsupenaeus japonicus (Bate). J Shellfish Res 25(2):631–637

    Article  Google Scholar 

  • Sellars M, Li F, Preston N et al (2010) Penaeid shrimp polyploidy: global status and future direction. Aquaculture 310:1–7

    Article  Google Scholar 

  • Sellars MJ, Wood A, Dixon TJ et al (2009) A comparison of heterozygosity, sex ratio and production traits in two classes of triploid Penaeus (Marsupenaeus) japonicus (Kuruma shrimp): polar body I vs II triploids. Aquaculture 296:207–212

    Article  Google Scholar 

  • Sellars M, Wood A, Murphy B et al (2013) Reproductive performance and mature gonad morphology of triploid and diploid Black Tiger shrimp (Penaeus monodon) siblings. Aqua Res 44(10):1493–1501

    Article  Google Scholar 

  • Subramoniam T (2011) Mechanisms and control of vitellogenesis in crustaceans. Fish Sci 77:1–21

    Article  CAS  Google Scholar 

  • Suzuki S (1999) Androgenic gland hormone is a sex-reversing factor but cannot be a sex-determining factor in the female crustacean isopods Armadillidium vulgare. Gen Comp Endocrinol 115:370–378

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Yamasaki K (1991) Sex-reversal of male Armadillidium vulgare (Isopoda, Malacostraca, Crustacea) following andrectomy and partial gonadectomy. Gen Comp Endocrinol 8:375–378

    Article  Google Scholar 

  • Taketomi Y, Murata M, Miyawaki M (1990) Androgenic gland and secondary sexual characters in the crayfish Procambarus clarkii. J Crust Biol 10(3):492–497

    Article  Google Scholar 

  • Taketomi Y, Nishikawa S, Koga S (1996) Testis and androgenic gland during development of external sexual characteristics of the crayfish Procambarus clarkii. J Crust Biol 16:24–34

    Article  Google Scholar 

  • Triño AT, Millamena OM, Keenan C (1999) Commercial evaluation of monosex pond culture of the mud crab Scylla species at three stocking densities in the Philippines. Aquaculture 174:109–118

    Article  Google Scholar 

  • Ventura T, Manor R, Aflalo ED et al (2009) Temporal silencing of an androgenic gland-specific insulin-like gene affecting phenotypical gender differences and spermatogenesis. Endocrinology 150:1278–1286

    Article  CAS  PubMed  Google Scholar 

  • Ventura T, Manor R, Aflalo ED et al (2012) Timing sexual differentiation: full functional sex reversal achieved through silencing of a single insulin-like gene in the prawn, Macrobrachium rosenbergii. Biol Reprod 86:90

    Article  PubMed  Google Scholar 

  • Ventura T, Rosen O, Sagi A (2011) From the discovery of the crustacean androgenic gland to the insulin-like hormone in six decades. Gen Comp Endocrinol 173:381–388

    Article  CAS  PubMed  Google Scholar 

  • Ventura T, Sagi A (2012) The insulin-like androgenic gland hormone in crustaceans: from a single gene silencing to a wide array of sexual manipulation-based biotechnologies. Biotechnol Adv 30:1543–1550

    Article  CAS  PubMed  Google Scholar 

  • Warrier SR, Tirumalai R, Subramoniam T (2001) Occurrence of vertebrate steroids, estradiol 17b and progesterone in the reproducing females of the mud crab Scylla serrata. Comp Biochem Physiol A 130:283–294

    Article  CAS  Google Scholar 

  • Yano I (1987) Effect of 17α-hydroxy-progesterone on vitellogenin secretion in kuruma prawn, Penaeus japonicus. Aquaculture 61:49–57

    Article  CAS  Google Scholar 

  • Zou E, Fingerman M (1997) Synthetic estrogenic agents do not interfere with sex differentiation but do inhibit molting of the cladoceran Daphnia magna. Bull Environ Contam Toxicol 58(4):596–602

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muzaffer Mustafa Harlıoğlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harlıoğlu, M.M., Farhadi, A. Feminization strategies in crustacean aquaculture. Aquacult Int 25, 1453–1468 (2017). https://doi.org/10.1007/s10499-017-0128-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-017-0128-z

Keywords

Navigation