Advertisement

Aquaculture International

, Volume 25, Issue 3, pp 1107–1122 | Cite as

Effect of Cynodon dactylon extract on white spot virus-infected Litopenaeus vannamei

  • O. Tomazelli Junior
  • F. Kuhn
  • P. J. Mendonça Padilha
  • L. R. Mota Vicente
  • S. Winckler da Costa
  • B. Corrêa da Silva
  • D. Dias Schleder
  • A. A. Boligon
  • J. Scapinello
  • C. Nunes Nesi
  • J. Dal Magro
  • S. De Lamo CastellvíEmail author
Article

Abstract

The objectives of this research were to study the phytochemical composition of Cynodon dactylon and investigate if the oral administration of this plant extract adsorbed on the pellet feed was capable of protecting L. vannamei challenged with white spot syndrome virus (WSSV). The shrimps were distributed into five batches, and experiments were run by triplicate: uninfected shrimps fed with pelleted feed without ethanolic extract of C. dactylon (ECDE, TC), infected shrimps fed with pelleted feed without ECDE (T1), infected shrimps fed with 1% of ECDE (T2), infected shrimps fed with 2% of ECDE (T3), and infected shrimps fed with 4% of ECDE (T4). The phytochemical screening of ECDE showed several compounds such as with important biological activities consistent with the results observed in vivo. Treatment with 2% ECDE showed a protective effect against WSSV and survival of 62% with no clinical signs of infection.

Keywords

Cynodon dactylon Litopenaeus vannamei White spot virus Phytochemical screening Phenoloxidase Total hemocytes Lectins 

Notes

Acknowledgements

The authors would like to acknowledge FINEP-Recarcina and Departament d’Enginyeria Química from Universitat Rovira i Virgili for their financial support. This study is in memoriam of Margareth Linde Athayde.

References

  1. Abdullah S, Gobilik J, Chong KP (2012) Preliminary phytochemical study and antimicrobial activity from various extract of Cynodon dactylon (L.) Pers. (Bermuda) against selected pathogens. Int J Pharm Pharm Sci 4(5):227–230Google Scholar
  2. Aguirre-Guzmán G, Sánchez-Martínez JG, Campa-Córdova AI et al (2009) Penaeid shrimp immune system. Thai J Vet Med 39(3):205–215Google Scholar
  3. Annapurna HV, Apoorva B, Ravichandran N et al (2013) Isolation and in silico evaluation of antidiabetic molecules of Cynodon dactylon (L.). J Mol Graph Model 39:87–97CrossRefPubMedGoogle Scholar
  4. Bachère E (2000) Shrimp immunity and disease control. Aquaculture 191:3–11CrossRefGoogle Scholar
  5. Balasubramanian G, Sarathi M, Kumar SR et al (2007) Screening the antiviral activity of Indian medicinal plants against white spot syndrome virus in shrimp. Aquaculture 263:15–19CrossRefGoogle Scholar
  6. Balasubramanian G, Sarathi M, Venkatesan C et al (2008a) Oral administration of antiviral plant extract of Cynodon dactylon on a large scale production against white spot syndrome virus (WSSV) in Penaeus monodon. Aquaculture 279:2–5CrossRefGoogle Scholar
  7. Balasubramanian G, Sarathi M, Venkatesan C et al (2008b) Studies on the immunomodulatory effect of extract of Cynodon dactylon in shrimp, Penaeus monodon, and its efficacy to protect the shrimp from white spot syndrome virus (WSSV). Fish Shellfish Immunol 25:820–828CrossRefPubMedGoogle Scholar
  8. Barracco MA, Perazzolo LM, Rosa RD (2007) Imunologia de crustáceos com ênfase em camarões. Laboratório de Imunologia Aplicada à Aqüicultura. Universidade Federal de Santa Catarina, FlorianópolisGoogle Scholar
  9. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1-2):248-254Google Scholar
  10. Calixto JB, Yunes RA (2001) Plantas medicinais sob a ótica da química medicinal moderna. Argos, ChapecóGoogle Scholar
  11. Camuesco D, Comalada M, Rodríguez-Cabezas ME et al (2004) The intestinal anti-inflammatory effect of quercitrin is associated with an inhibition in iNOS expression. Br J Pharmacol 143:908–918CrossRefPubMedPubMedCentralGoogle Scholar
  12. Carvalho MSS, Pedreira CGS, Tonato F (2012) Análise de crescimento de capins do gênero Cynodon submetidos a frequencias de colheita. B. Indústr. A. 69(1):041–049Google Scholar
  13. Chakraborty S, Ghosh U (2013) Pharmaceutical and phytochemical evaluation of a novel anti – white spot syndrome virus drug derived from marine plants. Int J Nat Prod Res 3(4):82–91Google Scholar
  14. Citarasu T (2010) Herbal biomedicines: a new opportunity for aquaculture industry. Aquacult Int 18:403–414CrossRefGoogle Scholar
  15. Citarasu T, Sivaram V, Immanuel G et al (2006) Influence of selected Indian immunostimulant herbs against white spot syndrome virus (WSSV) infection in black tiger shrimp, Penaeus monodon with reference to haematological, biochemical and immunological changes. Fish Shellfish Immunol 21:372–384CrossRefPubMedGoogle Scholar
  16. Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356CrossRefPubMedGoogle Scholar
  17. da Silva JM, Antinarelli LM, Pinto Nde C, Coimbra ES, de Souza-Fagundes EM, Ribeiro A, Scio E (2014) HPLC-DAD analysis, antileishmanial, antiproliferative, and antibacterial activities of Lacistema pubescens: an Amazonian medicinal plant. Biomed Res Int 2014:1-7Google Scholar
  18. Elmastaş M, Gülçin İ, Beydemir Ş et al (2006) A study on the in vitro antioxidant activity of juniper (Juniperus communis L.) fruit extracts. Anal Lett 39(1):47–65CrossRefGoogle Scholar
  19. Erlund I (2004) Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res 24: 851–874.Google Scholar
  20. Flegel TW, Alday-Sanz V (1998) The crisis in Asian shrimp aquaculture: current status and future needs. J Appl Ichthyol 14:269–273CrossRefGoogle Scholar
  21. Ghosh U, Chakraborty S (2013) Initial drug substance characterization (IDSC) of a novel anti-white spot syndrome virus drug derived from terrestrial plants. Int J Anal Bioanal Chem 3(4):122–145Google Scholar
  22. Guertler C, Rieg T, Mejía-Ruíz CH et al (2013) Hemograma e sobrevivência de camarões marinhos após silenciamento do WSSV por RNA de interferência. Pesquisa Agropecuaria Brasileira 48(8):983–990CrossRefGoogle Scholar
  23. Hameed ASS, Balasubramanian G, Musthaq SS et al (2003) Experimental infection of twenty species of Indian marine crabs with white spot syndrome virus (WSSV). Dis Aquat Org 57(1–2):157–161CrossRefPubMedGoogle Scholar
  24. Han X, Shen T, Lou H (2007) Dietary polyphenols and their biological significance. Int J Mol Sci 8(9):950–988CrossRefPubMedCentralGoogle Scholar
  25. Hanisch AL, Flaresso JA, Córdova UA et al. (2012) Pastagens para produção de leite em Santa Catarina. pp. 115–176 In: Córdova UA (ed) Produção de leite à base de pasto em Santa Catarina. Florianópolis: Epagri, 2012.Google Scholar
  26. Hsieh TJ, Wang JC, Hu CY et al (2008) Effects of rutin from Toona sinensis on the immune and physiological responses of white shrimp (Litopenaeus vannamei) under Vibrio alginolyticus challenge. Fish Shellfish Immunol 25(5):581–588CrossRefPubMedGoogle Scholar
  27. Icepa (2010) Síntese Anual da Agricultura de Santa Catarina. Epagri/Cepa, FlorianópolisGoogle Scholar
  28. Jananie RK, Priya V, Vijayalakshmi K (2011) Determination of bioactive components of Cynodon dactylon by GC-MS analysis. New York Sci J 4(4):16–20Google Scholar
  29. Jonhson AW, Snook ME, Wiseman BR (2002) Green leaf chemistry of various turfgrasses: differentiation and resistant to fall armyworm. Crop Sci 42:2004–20010CrossRefGoogle Scholar
  30. Koroleff F (1976) Determination of nutrients. In: Grasshoffk (ed) Methods of seawater analysis. Verlag Chemie, Weinheim, pp. 117–181Google Scholar
  31. Lee SY, Söderhäll K (2002) Early events in crustacean innate immunity. Fish Shell Imunol 12:421–437CrossRefGoogle Scholar
  32. Lightner DV (2005) Biosecurity in shrimp farming: pathogen exclusion through use of SPF stock and routine surveillance. J World Aquacult Soc 36(3):229–248CrossRefGoogle Scholar
  33. Lightner DV (2011) Status of shrimp diseases and advances in shrimp health management. Dis Asian Aquac 7:121–133Google Scholar
  34. Lopes-Lazaro M (2009) Distribution and biological activities of the flavonoid luteolin. Med Chem 9:31–59Google Scholar
  35. Maggioni DS, Andreatta ER, Hermes EM et al (2004) Evaluation of some hemato-immunological parameters in female shrimp Litopenaeus vannamei submitted to unilateral eyestalk ablation in association with a diet supplemented with superdoses of ascorbic acid as a form of immunostimulation. Aquaculture 241(1–4):501–515CrossRefGoogle Scholar
  36. Malheiros A, Peres MTLP (2001) Alelopatia: interações químicas entre espécies. In: Calixto JB, Yunes RA (eds) Plantas medicinais sob a ótica da moderna química medicianal. Argos, Chapecó, pp. 505–523Google Scholar
  37. Marchesan R, Paris W, Ziech MF et al (2013) Production and chemical composition of Tifton 85 (Cynodon dactylon L. Pers) under continuous grazing during winter. Ciências Agrárias 34(4):1933–1942CrossRefGoogle Scholar
  38. Medina-beltrán V, Luna-gonzález A, Fierro-coronado JA et al (2012) Echinacea purpurea and Uncaria tomentosa reduce the prevalence of WSSV in witheleg shrimp (Litopenaeus vannamei) cultured under laboratory conditions. Aquaculture 358-359:164–169CrossRefGoogle Scholar
  39. Melinda KP, Rathinam X, Marimuthu K et al (2010) A comparative study on the antioxidant activity of methanolic leaf extracts of Ficus religiosa L, Chromolaena odorata (L.) King & Rabinson, Cynodon dactylon (L.) Pers. and Tridax procumbens L. Asian Pacific. Journal of Tropical Medicine 3(5):348–350Google Scholar
  40. Mensor LL, Menezes FS, Leitão GG et al (2001) Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res 15(2):127–130CrossRefPubMedGoogle Scholar
  41. Morales-Covarrubias MS (2008) Enfermedades Bacterianas. In: Morales VQ, Cuéllar-Anjel J (eds) Guía técnica—patología e inmunología de camarones penaeidos. Programa CYTED Red II-D Vannamei, Panamá, Rep. de Panamá, pp. 137–152Google Scholar
  42. NIST/EPA/NIH (2008) Search/analysis program and data (NIST 08). Shimatzu Corporation, JapanGoogle Scholar
  43. Nunes AJP, Gesteira TCV, Oliveira GG et al. (2005) Princípios para Boas Práticas de Manejo (BPM) na engorda de camarão marinhos no Estado do Ceará. Instituto de Ciências do Mar (Labomar/UFC). Programa de Zoneamento Ecológico Econômico (ZEE) do Estado do Ceará.Google Scholar
  44. Peraza-Gómez V, Luna-González A, González-Prieto JM et al (2014) Protective effect of microbial immunostimulants and antiviral plants against WSSV in Litopenaeus vannamei cultured under laboratory conditions. Aquaculture 420-421:160–164CrossRefGoogle Scholar
  45. Phillipson JD (2001) Phytochemistry and medicinal plants. Phytochemistry 56:237–243CrossRefPubMedGoogle Scholar
  46. Pinto AC, Silva DHS, Bolzani VS et al (2002) Produtos naturais: atualidades, desafios e perspectivas. Quím Nov. 25(1):45–61CrossRefGoogle Scholar
  47. Prior S, Browdy CL, Shepard EF et al (2003) Controlled bioassay systems for determination of lethal infective doses of tissue homogenates containing Taura syndrome or white spot syndrome virus. Dis Aquat Org 54(2):89–96CrossRefPubMedGoogle Scholar
  48. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
  49. Raman BV, La S, Saradhi MP et al (2012) Antibacterial, antioxidant activity and GC-MS analysis of Eupatorium odoratum. Asian J Pharm Clin Res 5(2):99–106Google Scholar
  50. Ratkowsky DA (1983) Nonlinear regression modeling. Marcel Dekker, New YorkGoogle Scholar
  51. Rodríguez J, Le Moullac G (2000) State of the art of immunological tools and health control of penaeid shrimp. Aquaculture 191:109–119CrossRefGoogle Scholar
  52. Sarathi M, Ishaq AVP, Venkatesan C et al (2007) Comparative study on immune response of Fenneropenaeus indicus to Vibrio alginolyticus and white spot syndrome virus. Aquaculture 271:8–20CrossRefGoogle Scholar
  53. Seelinger G, Merfort I, Wölfle U et al (2008) Anti-carcinogenic effects of the flavonoid luteolin. Molecules 13:2628–2651CrossRefPubMedGoogle Scholar
  54. Söderhäll K, Häll L (1984) Lipopolysaccharide-induced activation of prophenoloxidase activating system in crayfish haemocyte lysate. Biochimica et Biophysica Acta (BBA)-General Subjects 797(1):99–104CrossRefGoogle Scholar
  55. Solanki R, Nagori BP (2012) Physicochemical and phytochemical investigation of whole plant of Cynodon dactylon. Int J Compr Pharm 03(10):1–4Google Scholar
  56. Sritunyalucksana K, Söderhäll K (2000) The proPO and clotting system in crustaceans. Aquaculture 191:53–69CrossRefGoogle Scholar
  57. Sudha PM, Mohan CV, Shankar KM et al (1998) Relationship between white spot syndrome virus infection and clinical manifestation in Indian cultured Penaeid shrimp. Aquaculture 167:95–101Google Scholar
  58. Takahashi Y, Fukuda K (2003) Detection and prevention of WSSV infection in cultured shrimp. Asian Aquaculture Magazine 75:25–27Google Scholar
  59. Van Wyk P, Scarpa J (1999) Water quality requirements and management. In: Van Wyk P, Davis-Hodkings M, Laramore R, Main KL, Mountain J, Scarpa J (eds) Farming marine shrimp in recirculating freshwater systems. Florida Department of Agriculture and Consumer Services, Tallahassee, Florida, p. 141Google Scholar
  60. Wang YT, Liu W, Seah JN et al (2002) White spot syndrome virus (WSSV) infects specific hemocytes of the shrimp Penaeus merguiensis. Dis Aquat Org 52(3):249–259CrossRefPubMedGoogle Scholar
  61. Yeh SP, Chen YN, Hsieh SL et al (2009) Immune response of white shrimp, Litopenaeus vannamei, after a concurrent infection with white spot syndrome virus and infectious hypodermal and hematopoietic necrosis virus. Fish Shellfish Immunol 26:582–588CrossRefPubMedGoogle Scholar
  62. Zhao ZY, Yin ZX, Weng SP, Guan HJ, Li SD, Xing K, Chan SM, He JG (2007) Profiling of differentially expressed genes in hepatopancreas of white spot syndrome virus-resistant shrimp (Litopenaeus vannamei) by suppression subtractive hybridization. Fish Shellfish Immunol 22:520–534.Google Scholar
  63. Zhao ZY, Yin ZX, Xu XP, Weng SP, Rao XY, Dai ZX, Luo YW, Yang G, Li ZS, Guan HJ, Li SD, Chan SM, Yu XQ, He JG (2009) A novel C-type lectin from the shrimp Litopenaeus vannamei possesses anti-White spot syndrome virus activity. J Virol 83(1):347-356Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • O. Tomazelli Junior
    • 1
  • F. Kuhn
    • 2
  • P. J. Mendonça Padilha
    • 3
  • L. R. Mota Vicente
    • 3
  • S. Winckler da Costa
    • 3
  • B. Corrêa da Silva
    • 3
  • D. Dias Schleder
    • 4
  • A. A. Boligon
    • 5
  • J. Scapinello
    • 2
  • C. Nunes Nesi
    • 6
  • J. Dal Magro
    • 2
  • S. De Lamo Castellví
    • 1
    Email author
  1. 1.Departament d’Enginyeria QuímicaUniversitat Rovira i VirgiliTarragonaSpain
  2. 2.Ciências AmbientaisUniversidade Comunitária da Região de Chapecó—UnochapecóChapecóBrazil
  3. 3.Epagri, Centro de Desenvolvimento da Aquicultura e PescaFlorianópolisBrazil
  4. 4.Instituto Federal de Santa Catarina (IFSC)AraquariBrazil
  5. 5.Laboratório de Fitoquímica, Departamento de Farmácia IndustrialUniversidade Federal de Santa Maria (UFSM)Santa MariaBrazil
  6. 6.Epagri–Centro de Pesquisa para Agricultura Familiar (Cepaf)ChapecóBrazil

Personalised recommendations