Skip to main content

Influence of water depth on growth and mortality of Chlamys varia (Linnaeus, 1758): implications for cage culture in Mali Ston Bay, Croatia

Abstract

This study investigated growth and mortalities of juvenile variegated scallops Chlamys varia (Linnaeus, 1758) grown in suspension at Mali Ston Bay in the Adriatic Sea. Juveniles collected from the previous year’s natural breeding, mean length of 14.58 mm, were placed in cages at three depths (1, 3 and 5 m), for 21 months. We compared results on shell heights at the end of growth period in relation to seawater temperature and salinity. Shell lengths averaged 45.30 ± 4.10 mm (range 39–54 mm) at 1 m depths, 42.48 ± 2.40 mm (39–48 mm) at 3 m, and 41.90 ± 4.25 mm (37–50 mm) at 5 m. Average monthly growth of shell height throughout the experimental period was 1.7 (1 m), 1.6 (3 m) and 1.7 mm (5 m). Total mortality throughout the experimental period was 25.0 % (1 m), 16.6 % (3 m) and 71.4 % (5 m). Furthermore, we estimate von Bertalanffy growth parameters from growth increment models, where extensions of the von Bertalanffy model that allow growth rate to vary with changing body size and with periodic (seasonal) changes in the growth parameter K are presented. The goal of this research was to evaluate the potential for commercial aquaculture of C. varia (growth rate, degree of survival and quality of the soft tissue) caged at different depths. Based on a combination of mortality and growth rate, we found that the most suitable depth for culture was at 1 m, but culture at all three depths is viable and the main issue is being the source of mortality at 5 m, seasonally. We conclude that Mali Ston Bay has good potential for variegated scallop mariculture.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Ackerman JD, Nishizaki MT (2004) The effect of velocity on the suspension feeding and growth of the marine mussels Mytilus trossulus and M. californianus: implications for niche separation. J Mar Syst 49:195–207

    Article  Google Scholar 

  • Antolović M, Antolović N (2012) Biological and ecological characteristics of variegated scallop Chlamys varia (Linnaeus, 1758.)—as the basis for farming. Croat J Fish 70:31–40

    Google Scholar 

  • Aragón-Noriega EA (2013) Individual growth modeling of the penshell Atrina maura (Bivalvia: Pinnidae) using a multi model inference approach. Rev Biol Trop 61:1167–1174

    PubMed  Google Scholar 

  • Begum S, Basova L, Heilmayer O et al (2010) Growth and energy budget models of the bivalve Arctica islandica at six different sites in the northeast atlantic realm. J Shellfish Res 29:107–115

    Article  Google Scholar 

  • Bourne NF (2000) The potential for scallop culture—the next millennium. Aquac Int 8:113–122

    Article  Google Scholar 

  • Brown A, Heilmayer O, Thatje S (2010) Metabolic rate and growth in the temperate bivalve Mercenaria mercenaria at a biogeographical limit, from the English Channel. J Mar Biol Assoc UK 90:1019–1023

    Article  Google Scholar 

  • Burnell GM (1991) Annual variations in the spawning and settlement of the scallop Chlamys varia (L.) on the west coast of Ireland. In: Shumway SE, Sandifer PA (eds) An international compendium of scallop biology and culture. World Aquaculture Society, Baton Rouge, pp 47–59

    Google Scholar 

  • Burnell GM (1995) Age-related protandry in the scallop, Chlamys varia (L.) on the west coast of Ireland. ICES Mar Sci Symp 199:26–30

    Google Scholar 

  • Cancelo MJ et al (1992) La culture suspendue de Chlamys varia, de la nourricerie a la taille commercial, en Galice (Espagne). In: Abstracts of the international symposium on the marine molluscs: biology and aquaculture, Brest France, 9 Nov 1992

  • Cano J, Campos MJ, Román G (2000) Growth and mortality of the king scallop grown in suspended culture in Malaga, Southern Spain. Aquac Int 8:207–225

    Article  Google Scholar 

  • Cao FJ, Liu ZG, Luo ZJ (2009) Effects of sea water temperature and salinity on the growth and survival of juvenile Meretrix meretrix Linnaeus. Ying Yong Sheng Tai Xue Bao 20:2545–2550

    PubMed  Google Scholar 

  • Cassis D, Pearce CM, Maldonado MT (2011) Effects of the environment and culture depth on growth and mortality in juvenile Pacific oysters in the Strait of Georgia, British Columbia. Aquac Environ Interact 1:259–274

    Article  Google Scholar 

  • Conan G, Shafee SM (1978) Growth and biannual recruitment of the black scallop Chlamys varia (L.) in Lanvéoc area, Bay of Brest. J Exp Mar Biol Ecol 35:59–71

    Article  Google Scholar 

  • De Wilde PAW (1975) Influence of temperature on behavior, energy metabolism and growth of Macoma halthica (L.). In: Barnes H (ed) Proceedings of the 9th European marine biology symposium, Aberdeen

  • Dekshenieks MM, Hofmann EE, Klinck JM et al (2000) Quantifying the effects of environmental change on and oyster population: a modeling study. Estuaries 23:593–610

    Article  Google Scholar 

  • Fabens AJ (1965) Properties and fitting of von Bertalanffy growth curve. Growth 29:265–289

    CAS  PubMed  Google Scholar 

  • González ML, López DA, Pérez MC et al (2002) Effect of temperature on the scope for growth in juvenile scallops Argopecten purpuratus (Lamark, 1819). Aquac Int 10:339–348

    Article  Google Scholar 

  • Goulletquer P, Héral M (1997) Marine molluscan production trends in France: from fisheries to aquaculture. In: McKenzie C, Burrell V, Rosenfield A, Hobart W (eds)The history, present condition, and future of the molluscan fisheries of North and Central America and Europe, vol 3, pp 137–164

  • Hiebenthal C, Philipp EER, Eisenhauer A et al (2012) Interactive effects of temperature and salinity on shell formation and general condition in Baltic Sea Mytilus edulis and Arctica islandica. J Aquat Biol 14:289–298

    Article  Google Scholar 

  • Kožul V, Glavić N, Bolotin J et al (2011) Growth of the fan mussel Pinna nobilis (Linnaesus, 1759) (Mollusca: Bivalvia) in experimental cages in South Adriatic Sea. Aquac Res 42:1786–1795

    Google Scholar 

  • Liddel MK (2008) A von Bertalanffy based model for the estimation of oyster growth (Crassostrea virginica) on restored oyster reef in Chesapeake bay. Dissertation, University of Maryland

  • Lodeiros C, Pico D, Prieto A et al (2002) Growth and survival of the pearl oyster Pinctada imbricata (Röding 1758) in suspended and bottom culture in the Golfo de Cariaco, Venezuela. Aquac Int 10:327–338

    Article  Google Scholar 

  • Louro A, De la Roche JP, Campos MJ et al (2003) Hatchery rearing of the black scallop, Chlamys varia (L.). J Shellfish Res 22:95–99

    Google Scholar 

  • Marguš D, Teskeredžić E, Teskeredžić Z et al (2005) Attachment of larva, survival and growth of juvenile variant scallop (Chlamis varia Linnaeus, 1758) in controlled breeding in Šarina Draga Bay-mouth of the Krka River. Croat J Fish 63:91–103

    Google Scholar 

  • Méthé D, Comeau LA, Stryhn H et al (2014) Survival and growth performance of Crassostrea virginica along an estuarine gradient. Aquac Int 23:1089–1103

    Article  Google Scholar 

  • Newell CR, Hidu H (1982) The effects of sediment type on growth rate and shell allometry in the soft shelled clam Mya arenaria L. J Exp Mar Biol Ecol 65:285–295

    Article  Google Scholar 

  • Newell RIE, Langdon CJ (1996) Mechanisms and physiology of larval and adult feeding. In: Kennedy VS, Newell NIE, Eble AE (eds) The eastern oyster: Crassostrea virginica. University of Maryland, Maryland Sea Grant College Program, pp 185–229

  • Özvarol Y, Gökoğlu M (2013) Some biological aspects of scallop Chlamys varia (Linnaeus, 1758) (bivalvia: pectinidae) from Aegean sea coast of Turkey. JAEBS 7:68–70

    Google Scholar 

  • Peharda M, Hrs-Benko M, Bogner D (2004) A contribution to the knowledge of bivalve species diversity in Mali Ston Bay (Adriatic Sea). Acta Adriat 45:197–208

    Google Scholar 

  • Peharda M, Ezgeta-Balić D, Davenport J et al (2013) The potential for aquaculture of the bearded horse mussel (Modiolus barbatus) and Noah’s Ark shell (Arca noae) in southern Croatia. Aquac Int 21:639–653

    Article  Google Scholar 

  • Philips NE (2005) Growth of filter-feeding benthic invertebrates from a region with variable upwelling intensity. Mar Ecol Prog Ser 295:79–89

    Article  Google Scholar 

  • Rodhouse PG, Burnell GM (1979) In situ studies on the scallop Chlamys varia. In: Gamble JC, George JD (eds) Progress in underwater science. Pentech Press, Plymouth, pp 87–97

    Google Scholar 

  • Roglić J, Meštrov M (1981) Counseling Mali Ston Bay. Natural background and social valuation. Yugoslav Academy of Arts and Sciences, Dubrovnik, pp 12–14

    Google Scholar 

  • Sarà G, Romano C, Widdows J et al (2008) Effect of salinity and temperature on feeding physiology and scope for growth of an invasive species (Brachidontes pharaonis—Mollusca: Bivalvia) within the Mediterranean sea. J Exp Mar Biol Ecol 363:130–136

    Article  Google Scholar 

  • Shafee SM (1979) Underwater observation to estimate the density and spatial distribution of black scallop, Chlamys varia (L.) in Lanvéoc (Bay of Brest). Bull Off Natl Peches (Tunisie) 3:143–156

    Google Scholar 

  • Shafee SM (1980) Application of some growth models to the black scallop Chlamys varia (L.) from Lanvéoc, Bay of Brest. J Exp Mar Biol Ecol 43:237–250

    Article  Google Scholar 

  • Shafee SM (1981) Seasonal changes in the biochemical composition and calorific content of the black scallop Chlamys varia (L.) from Lanvéoc (Rade the Brest). Oceanol Acta 4:331–341

    CAS  Google Scholar 

  • Shafee SM (1982) Variations saisonnièresde la consummation d’oxygène chez le petoncle noir, Chlamys varia (L.) de Lanvéoc (Rade the Brest). Oceanol Acta 5:189–197

    Google Scholar 

  • Shafee SM, Lucas A (1980) Quantitative studies on the reproduction of black scallop Chlamys varia (L.) from Lanveoc area. J Exp Mar Biol Ecol 42:171–186

    Article  Google Scholar 

  • Shafee SM, Lucas A (1982) Variations saisonnières du bilan énergétique chez les individus d’une population de Chlamys varia (L.): Bivalvia, Pectinidae. Oceanol Acta 5:331–338

    Google Scholar 

  • Shumway S (1996) Natural environmental factors. In: Kennedy VS, Newell RIE, Eble AF (eds) The eastern oyster Crassostrea virginica. Maryland Sea Grant College, University of Maryland, College Park, pp 467–503

    Google Scholar 

  • Shurova N (2001) Influence of salinity on the structure and the state of bivalve Mytilus galloprovincialis populations. Russ J Mar Biol 27:151–155

    Article  Google Scholar 

  • Springborn RR, Jensen AL, Chang WYB (1994) A variable growth rate modification of von Bertalanffy’s equation for aquaculture. Aquac Res 25:259–267

    Article  Google Scholar 

  • Steffani CN, Branch GM (2003) Growth rate, condition, and shell shape of Mytilus galloprovincialis: responses to wave exposure. Mar Ecol Prog Ser 246:197–209

    Article  Google Scholar 

  • Zonghe Y, Baozhong L, Hongsheng Y et al (2010) Seasonal variations in growth and clearance rate of the Zhikong scallop Chlamys farreri suspended in the deep water of Haizhou Bay, China. Aquac Int 18:813–824

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks are due to Dr.sc. Valter Kožul and Dr.sc. Nenad Antolović for collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josip Barišić.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rathman, M., Bolotin, J., Glavić, N. et al. Influence of water depth on growth and mortality of Chlamys varia (Linnaeus, 1758): implications for cage culture in Mali Ston Bay, Croatia. Aquacult Int 25, 135–146 (2017). https://doi.org/10.1007/s10499-016-0018-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-016-0018-9

Keywords

  • Chlamys varia
  • Depth
  • Growth rate
  • Mortality
  • von Bertalanffy