Advertisement

Aquaculture International

, Volume 24, Issue 5, pp 1449–1457 | Cite as

Using physiological and zootechnical profiles to evaluate welfare in farmed rainbow trout Oncorhynchus mykiss (Walbaum) under stressful conditions

  • Cyril DelfosseEmail author
  • Cécile Bienboire-Frosini
  • Camille Chabaud
  • Céline Lafont-Lecuelle
  • Alessandro Cozzi
  • Patrick Pageat
Article
  • 233 Downloads

Abstract

The welfare of farmed animals, and more recently of farmed fish, is a growing concern in current society. Changes in living conditions represent one of the most stressful situations in fish production. It is crucial to develop tools to evaluate welfare in farmed fish throughout the various situations observed during the production cycle. The present work aims to select relevant parameters in order to evaluate the welfare of trout, by describing the physiological and zootechnical profiles of rainbow trout Oncorhynchus mykiss (Walbaum) populations during adaptation to a new environment. Ten days after transferring seven groups of farmed trout to a laboratory setting, a principal component analysis was performed on five parameters: plasma cortisol level (PCL), hepatosomatic index (HI), growth (G), food intake (FI) and food conversion ratio (FCR). PCL and FCR were positively correlated and were both negatively correlated with FI and G. FI and G were positively correlated. HI was not correlated with any other parameter. PCL was considered as being at basal levels. Descriptive statistics and the principal component analysis suggest measuring PCL, G, FI and FCR to be a relevant strategy for evaluating the welfare of trout when adapting to a new environment. The study demonstrates the relevance of this approach in evaluating specific profiles related to the welfare of farmed animals.

Keywords

Animal welfare Cortisol level Growth performances Principal component analysis Rainbow trout 

Abbreviations

ELISA

Enzyme-linked immunosorbent assay

FI

Food intake

FCR

Food conversion ratio

G

Growth

HI

Hepatosomatic index

PCA

Principal component analysis

PCL

Plasmatic cortisol level

Notes

Acknowledgments

Rainbow trout were kindly provided by the farmer D. Meyer who manages the fish farm. We would like to thank E. Landen, a professional translator, and Dr. M. Mengoli for reviewing the manuscript. We are also grateful to IRSEA’s Ethical Committee for their comments on the protocol.

References

  1. Ashley PJ (2007) Fish welfare: current issues in aquaculture. Appl Anim Behav Sci 104:199–235. doi: 10.1016/j.applanim.2006.09.001 CrossRefGoogle Scholar
  2. Barton BA, Peter RE (1982) Plasma cortisol stress response in fingerling rainbow trout, Salmo gairdneri Richardson, to various transport conditions, anaesthesia, and cold shock. J Fish Biol 20:39–51. doi: 10.1111/j.1095-8649.1982.tb03893.x CrossRefGoogle Scholar
  3. Barton BA, Schreck CB, Barton LD (1987) Effects of chronic cortisol administration and daily acute stress on growth, physiological conditions, and stress responses in juvenile rainbow trout. Dis Aquat Org 2:173–185CrossRefGoogle Scholar
  4. Basrur TV, Longland R, Wilkinson RJ (2010) Effects of repeated crowding on the stress response and growth performance in Atlantic salmon (Salmo salar). Fish Physiol Biochem 36:445–450. doi: 10.1007/s10695-009-9314-x CrossRefPubMedGoogle Scholar
  5. Begout Anras M, Lagardere J (2004) Domestication et comportement chez les poissons téléostéens. INRA Prod Anim 17:211–215Google Scholar
  6. Braithwaite VA, Ebbesson LOE (2014) Pain and stress responses in farmed fish. Rev Sci Tech Off Int Epizoot 33:245–253CrossRefGoogle Scholar
  7. Broom DM (2007) Welfare in relation to feelings, stress and health. Rev Electron Vet 8:207–222Google Scholar
  8. Broom DM (2008) Welfare assessment and relevant ethical decisions: key concepts. Annu Rev of Biomed Sci 10:79–90. doi: 10.5016/1806-8774.2008.v10pT79 CrossRefGoogle Scholar
  9. Broom DM, Fraser AF (2007) Domestic animal behaviour and welfare. CAB International, CambridgeGoogle Scholar
  10. Broom DM, Johnson KG (1993) Stress and animal welfare. CAB International, DordrechtGoogle Scholar
  11. FAO (2004–2016) Programme d'Information sur les espèces aquatiques cultivées. Salmo salar. Programme d'Information sur les espèces aquatiques cultivées. Text by Jones M In: Département des pêches et de l’aquaculture de la FAO [en ligne]. Rome. http://www.fao.org/fishery/culturedspecies/Salmo_salar/fr
  12. FAO (2005–2016) Programme d'Information sur les espèces aquatiques cultivées. Oncorhynchus mykiss. Programme d'Information sur les espèces aquatiques cultivées. Text by Cowx IG In: Département des pêches et de l’aquaculture de la FAO [en ligne]. Rome. http://www.fao.org/fishery/culturedspecies/Oncorhynchus_mykiss/fr
  13. Fast MD, Hosoya S, Johnson SC, Afonso LOB (2008) Cortisol response and immune-related effects of Atlantic salmon (Salmo salar Linnaeus) subjected to short- and long-term stress. Fish Shellfish Immunol 24:194–204. doi: 10.1016/j.fsi.2007.10.009 CrossRefPubMedGoogle Scholar
  14. Fevolden S-E, Røed KH, Fjalestad KT (2002) Selection response of cortisol and lysozyme in rainbow trout and correlation to growth. Aquaculture 205:61–75. doi: 10.1016/S0044-8486(01)00660-3 CrossRefGoogle Scholar
  15. Folkedal O, Stien LH, Torgersen T et al (2012) Food anticipatory behaviour as an indicator of stress response and recovery in Atlantic salmon post-smolt after exposure to acute temperature fluctuation. Physiol Behav 105:350–356. doi: 10.1016/j.physbeh.2011.08.008 CrossRefPubMedGoogle Scholar
  16. Gilmour KM, Dibattista JD, Thomas JB (2005) Physiological causes and consequences of social status in salmonid fish. Integr Comp Biol 45:263–273. doi: 10.1093/icb/45.2.263 CrossRefPubMedGoogle Scholar
  17. Gregory TR, Wood CM (1999) The effects of chronic plasma cortisol elevation on the feeding behaviour, growth, competitive ability, and swimming performance of juvenile rainbow trout. Physiol Biochem Zool PBZ 72:286–295. doi: 10.1086/316673 CrossRefPubMedGoogle Scholar
  18. Huntingford FA, Kadri S (2014) Defining, assessing and promoting the welfare of farmed fish. Rev Sci Tech Off Int Epizoot 33:233–244CrossRefGoogle Scholar
  19. IFREMER (2006) Saumon d’Atlantique. In: La découverte des poissons et de leur élevageGoogle Scholar
  20. Iwama G, Afonso LOB, Vijayan M (2005) Stress in fishes. In: Evans D, Claiborne J (eds) The physiology of fishes. Boca raton, pp 320–42Google Scholar
  21. Jenkins JA, Bart HL, Bowker JD et al (2014) Guidelines for the use of fishes in research. American Fisheries Society, MarylandGoogle Scholar
  22. Jentoft S, Aastveit AH, Torjesen PA, Andersen O (2005) Effects of stress on growth, cortisol and glucose levels in non-domesticated Eurasian perch (Perca fluviatilis) and domesticated rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol 141:353–358. doi: 10.1016/j.cbpb.2005.06.006 CrossRefPubMedGoogle Scholar
  23. Kupsala S, Jokinen P, Vinnari M (2013) Who cares about farmed fish? Citizen perceptions of the welfare and the mental abilities of fish. J Agric Environ Ethics 26:119–135. doi: 10.1007/s10806-011-9369-4 CrossRefGoogle Scholar
  24. Martinez-Porchas M, Martinez-Cordova LR, Ramos-Enriquez R (2009) Cortisol and glucose: reliable indicators of fish stress? Am J Aquat Sci 4:158–178Google Scholar
  25. McCormick S, Shrimpton J, Carey J et al (1998) Repeated acute stress reduces growth rate of Atlantic salmon parr and alters plasma levels of growth hormone, insulin-like growth factor I and cortisol. Aquaculture 168:221–235. doi: 10.1016/S0044-8486(98)00351-2 CrossRefGoogle Scholar
  26. Mommsen TP, Vijayan MM, Moon TW (1999) Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fish 9:211–268CrossRefGoogle Scholar
  27. Mormède P, Andanson S, Aupérin B et al (2007) Exploration of the hypothalamic-pituitary-adrenal function as a tool to evaluate animal welfare. Physiol Behav 92:317–339. doi: 10.1016/j.physbeh.2006.12.003 CrossRefPubMedGoogle Scholar
  28. Pickering AD, Pottinger TG (1989) Stress responses and disease resistance in salmonid fish: effects of chronic elevation of plasma cortisol. Fish Physiol Biochem 7:253–258. doi: 10.1007/BF00004714 CrossRefPubMedGoogle Scholar
  29. Rance T, Baker BI, Webley G (1982) Variations in plasma cortisol concentrations over a 24-hour period in the rainbow trout Salmo gairdneri. Gen Comp Endocrinol 48:269–274CrossRefPubMedGoogle Scholar
  30. Sink TD, Lochmann RT, Fecteau KA (2008) Validation, use, and disadvantages of enzyme-linked immunosorbent assay kits for detection of cortisol in channel catfish, largemouth bass, red pacu, and golden shiners. Fish Physiol Biochem 34:95–101. doi: 10.1007/s10695-007-9150-9 CrossRefPubMedGoogle Scholar
  31. Syndicat Mixte du Bassin des Sorgues (2006) Etude Hydrologique des Sorgues - Compte rendu de prélèvement - Décembre 2006. BarjolsGoogle Scholar
  32. Van Weerd JH, Komen J (1998) The effects of chronic stress on growth in fish: a critical appraisal. Comp Biochem Physiol A Mol Integr Physiol 120:107–112. doi: 10.1016/S1095-6433(98)10017-X CrossRefGoogle Scholar
  33. Vannier P, Michel V, Keeling LJ (2014) Science-based management of livestock welfare in intensive systems: looking to the future. Sci Tech Rev Off Int Epizoot 33:153–160CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Cyril Delfosse
    • 1
    Email author
  • Cécile Bienboire-Frosini
    • 1
  • Camille Chabaud
    • 1
  • Céline Lafont-Lecuelle
    • 1
  • Alessandro Cozzi
    • 1
  • Patrick Pageat
    • 1
  1. 1.Research Institute in Semiochemistry and Applied Ethology (IRSEA)AptFrance

Personalised recommendations