Skip to main content

Ammonia and nitrite toxicity to false clownfish Amphiprion ocellaris

Abstract

False clownfish, Amphiprion ocellaris, is one of the most commercialized fish species in the world, highly produced to supply the aquarium market. The high stocking densities used to maximize fish production can increase ammonia and nitrite to toxic levels. In this study, A. ocellaris juveniles (1.20 ± 0.34 g) were exposed to six concentrations of ammonia ranged from 0.23 to 1.63 mg/L NH3-N and eight concentrations of nitrite (26.3–202.2 mg/L NO2 -N). The LC50- 24, LC50-48, LC50-72 and LC50-96 h were estimated to be 1.06, 0.83, 0.75 and 0.75 mg/L for NH3-N and 188.3, 151.01, 124.1 and 108.8 mg/L for NO2 -N. Analysis of gill lesions caused by sublethal concentrations of these nitrogenous compounds showed that both nitrogenous compounds induced tissue lesions such as hyperplasia of epithelium cells, hypertrophy of chloride cells and lamellar lifting to all concentrations tested. However, histopathological alterations were more conspicuous accordingly the increase of ammonia or nitrite in fish exposed to 0.57 mg/L NH3-N or 100 mg/L NO2 -N. Based on our results, we recommend to avoid concentrations higher than 0.57 mg/L of NH3-N and 25 mg/L of NO2-N in water.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Almendras JME (1987) Acute nitrite toxicity and methemoglobinemia in juvenile milkfish (Chanos chanos Forsskal). Aquaculture 61:33–40

    CAS  Article  Google Scholar 

  2. Aminot A, Chaussepied M (1983) Manuel des analyses chimiques en milieu marin. CNEXO, FRA, Brest

    Google Scholar 

  3. Barbieri E, Doi SA (2012) Acute toxicity of ammonia on juvenile cobia (Rachycentron canadum, Linnaeus, 1766) according to the salinity. Aquacult Int 20(2):373–382

    CAS  Article  Google Scholar 

  4. Basset J, Denney RC, Jeffrey GH, Mendham J (1981) Vogel: análise inorgânica quantitativa. BRA, Rio de Janeiro

    Google Scholar 

  5. Benli AÇK, Köksal G, Özkul A (2008) Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): effects on gill, liver and kidney histology. Chemosphere 72:1355–1358

    CAS  Article  PubMed  Google Scholar 

  6. Bernet D, Schmidt H, Meier W, Burkhardt-Holm P, Wahli T (1999) Histopathology in fish: proposal for a protocol to assess aquatic pollution. J Fish Dis 22:25–34

    Article  Google Scholar 

  7. Bianchini A, Wasielesky W, Miranda Filho KC (1996) Toxicity of nitrogenous compounds to juveniles of flatfish Paralichthys orbignyanus. Bull Environ Contam Toxicol 56:453–459

    CAS  Article  PubMed  Google Scholar 

  8. Bower CE, Bidwell J (1978) Ionization of ammonia in seawater: effects of temperature, pH, and salinity. J Fish Res Board Can 35:1012–1016

    CAS  Article  Google Scholar 

  9. Clesceri LS, Greenberghand AE, Trussel RR (1989) Standard methods: for examination of water and wastewater. APHA, Washington

    Google Scholar 

  10. Costa LDF, Miranda-Filho KC, Severo MP, Sampaio LA (2008) Tolerance of juvenile pompano Trachinotus marginatus to acute ammonia and nitrite exposure at different salinity levels. Aquaculture 285:270–272

    CAS  Article  Google Scholar 

  11. Ellis T, North B, Scott AP, Bromage NR, Porter M, Gadd D (2002) The relationships between stocking density and welfare in farmed rainbow trout. J Fish Biol 61:493–531

    Article  Google Scholar 

  12. Gomulka P, Żarski D, Kupren K, Krejszeff S, Targońska K, Kucharczyk D (2014) Acute ammonia toxicity during early ontogeny of ide Leuciscus idus (Cyprinidae). Aquacult Int 22:225–233

    CAS  Article  Google Scholar 

  13. Grasshoff KM, Ehrhardtand K, Kremling K (1999) Methods of seawater analysis. Wiley-VCH, Weinheim, DEU

    Book  Google Scholar 

  14. Grossel M, Jensen FB (1999) NO2 uptake and HCO3 excretion in the intestine of the European flounder (Platuchthys flesus). J Exp Biol 202:2103–2110

    Google Scholar 

  15. Hamilton MA, Russo RC, Thurston RV (1977) Trimmed Spearman–Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 11:714–719

    CAS  Article  Google Scholar 

  16. Hoff FH (1996) Conditioning spawning and rearing of fish. Florida Aqua Farms Inc, Dade City

    Google Scholar 

  17. Ip YK, Chew SF (2010) Ammonia production, excretion, toxicity, and defense in fish: a review. Front Physiol 1:1–20

    Article  Google Scholar 

  18. Jensen FB (2003) Nitrite disrupts multiple physiological functions in aquatic animals. Comp Biochem Phys A 135:9–24

    Article  Google Scholar 

  19. Kroupova H, Machova J, Svobodova Z (2005) Nitrite influence on fish: a review. Vet Med Czech 50:461–471

    CAS  Google Scholar 

  20. Lease HM, Hansen JA, Bergman HL, Meyer JS (2003) Structural changes in gills of Lost River suckers exposed to elevated pH and ammonia concentrations. Comp Biochem Physiol C: Toxicol Pharmacol 134:491–500

    Google Scholar 

  21. Mallat J (1985) Fish gill structural changes induced by toxicants and other irritants: a statistical review. Can J Fish Aquat Sci 42:630–648

    Article  Google Scholar 

  22. Meade JW (1985) Allowable ammonia for fish culture. Prog Fish Cult 47:135–145

    CAS  Article  Google Scholar 

  23. Miron DS, Moraes B, Becker AG, Crestani M, Spanevello R, Loro VL, Baldisserotto B (2008) Ammonia and pH effects on some metabolic parameters and gill histology of silver catfish, Rhamdia quelen (Heptapteridae). Aquaculture 277:192–196

    CAS  Article  Google Scholar 

  24. Ostrensky A, Marchiori MA, Poersch LH (1992) Toxicidade aguda da amônia no processo produtivo de pós-larvas de Penaeus paulensis, Pérez-Farfante, 1967. An Acad Bras Ciênc 64:383–389

    CAS  PubMed  Google Scholar 

  25. Randall DJ, Tsui TKN (2002) Ammonia toxicity in fish. Mar Pollut Bull 45:17–23

    CAS  Article  PubMed  Google Scholar 

  26. Rhyne AL, Tlusty MF, Schofield PJ, Kaufman L, Morris JA, Bruckner AW (2012) Revealing the appetite of the marine aquarium fish trade: the volume and biodiversity of fish imported into the United States. PLoS One 7(5):e35808

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Rijn JV (1996) The potential for integrated biological treatment systems in recirculating fish culture: a review. Aquaculture 139:181–201

    Article  Google Scholar 

  28. Rocha JMB, Kersanach MW, Baumgarten MGZ (2010) Titrimetria (Volumetria). In: Baumgarten MGZ, Kersanach MW, Niencheski LFH (eds) Manual de Análises em Oceanografia Química (Editora da FURG). BRA, Rio Grande

    Google Scholar 

  29. Rodrigues RV, Schwarz MH, Delbos BC, Sampaio LA (2007) Acute toxicity and sublethal effects of ammonia and nitrite for juvenile cobia Rachycentron canadum. Aquaculture 271:553–557

    CAS  Article  Google Scholar 

  30. Rodrigues RV, Schwarz MH, Delbos BC, Carvalho EL, Romano LA, Sampaio LA (2011) Acute exposure of juvenile cobia Rachycentron canadum to nitrate induces gill esophageal and brain damage. Aquaculture 322–323:223–226

    Article  Google Scholar 

  31. Rodrigues RV, Romano LA, Schwarz MH, Delbos B, Sampaio LA (2014) Acute tolerance and histopathological effects of ammonia on juvenile maroon clownfish Premnas biaculeatus. Aquac Res 45:1133–1139

    CAS  Article  Google Scholar 

  32. Sampaio LA, Wasielesky W, Miranda-Filho KC (2002) Effect of salinity on acute toxicity of ammonia and nitrite to juvenile Mugil platanus. Bull Environ Contam Toxicol 68:668–674

    CAS  Article  PubMed  Google Scholar 

  33. Santos DMS, Melo MRS, Mendes DCS, Rocha IKBS, Silva JPL, Cantanhêde SM, Meletti PC (2014) Histological changes in gills of two fish species as indicators of water quality in Jansen Lagoon (São Luís, Maranhão State, Brazil). Int J Environ Res Public Health 11:12927–12937

    CAS  Article  PubMed Central  Google Scholar 

  34. Thurston RV, Russo RC, Vinogradov GA (1981) Ammonia toxicity to fishes. Effect of pH on the toxicity of the unionized ammonia. Environ Sci Technol 15:837–840

    CAS  Article  Google Scholar 

  35. Watson CA, Hill JE (2006) Design criteria for recirculating, marine ornamental production systems. Aquac Eng 34:157–162

    Article  Google Scholar 

  36. Weirich CR, Riche M (2006a) Acute tolerance of juvenile Florida pompano, Trachinotus carolinus L., to ammonia and nitrite at various salinities. Aquac Res 37:855–861

    CAS  Article  Google Scholar 

  37. Weirich CR, Riche M (2006b) Tolerance of juvenile black sea bass Centropristis striata to acute ammonia and nitrite exposure at various salinities. Fish Sci 72:915–921

    CAS  Article  Google Scholar 

  38. Whitfield M (1974) The hydrolysis of ammonium ions in sea water: a theoretical study. J Mar Biol Assoc UK 54:565–580

    CAS  Article  Google Scholar 

  39. Wise DJ, Tomasso JR (1989) Acute toxicity of nitrite to red drum Sciaenops ocellatus: effect of salinity. J World Aquac Soc 20:193–198

    Article  Google Scholar 

  40. Wittenrich ML (2007) The complete illustrated breeder’s guide to marine aquarium fishes. Microcosm Ltd. and T.F.H. Publications Inc., Neptune city

    Google Scholar 

  41. Wuertz S, Schulze SGE, Eberhardt U, Schulz C, Schroeder JP (2013) Acute and chronic nitrite toxicity in juvenile pike-perch (Sander lucioperca) and its compensation by chloride. Comp Biochem Physiol C: Toxicol Pharmacol 157:352–360

    CAS  Google Scholar 

Download references

Acknowledgments

R. S. Medeiros and B. A. Lopez are students of the Graduate Program in Aquaculture at FURG and are supported by the Brazilian funding agencies CAPES and CNPq, respectively. L. A. Romano and L. A. Sampaio are fellow researchers of CNPq, and R. V. Rodrigues is supported by CAPES.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ricardo Vieira Rodrigues.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Medeiros, R.S., Lopez, B.A., Sampaio, L.A. et al. Ammonia and nitrite toxicity to false clownfish Amphiprion ocellaris . Aquacult Int 24, 985–993 (2016). https://doi.org/10.1007/s10499-015-9965-9

Download citation

Keywords

  • Marine ornamental
  • Nitrogenous compounds
  • Histopathology
  • LC50