Skip to main content

Advertisement

Log in

The use of shellfish for eutrophication control

  • European Aquaculture Development since 1993
  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Effects of excess loading of nutrients to the marine environment can be mitigated by mussel cultures, basically through nutrient removal from the marine environment when shellfish are harvested. Shellfish farming also provide other goods and services to the marine environment primarily through the impact on water transparency caused by shellfish filtration. There is an increasing awareness of the mitigation potential in mussel culture in relation to eutrophication, but so far practical examples of culture on full scale devoted to mitigation are few. Further, impact of mussel farming on nutrient cycling, e.g. in the sediments below the culture units, has raised concerns. In this review, we clarify concepts in relation to nutrient mitigation and discuss goods and services delivered by mussel mitigation cultures and their impact on an ecosystem scale based primarily on results from studies in heavily eutrofied estuaries. A multi-criteria approach for site selection is presented based on experiences from Danish waters, and economic aspects of mitigation cultures are analysed in relation to use of the produced mitigation mussels. Future perspectives for extractive cultures are discussed in relation to source of excess nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alpine AE, Cloern JE (1992) Trophic interactions and direct physical effects control phytoplankton biomass and production in an estuary. Limnol Oceanogr 37:946–955

    Article  Google Scholar 

  • Anagnostidis A, Michailidou M, Vatsos IN, Tsopelakos A, Miliou H, Angelidis P (2015) Use of frozen mussel (Mytilus galloprovincialis) and mussel meal in the diet of sea bass (Dicentrarchus labrax Linnaeus, 1758) and sea bream (Sparus aurata Linnaeus, 1758) fingerlings—a preliminary study. Aquac Res 46:252–256. doi:10.1111/are.12174

    Article  Google Scholar 

  • Andersen HE, Grant R, Blicher-Mathiasen G, Jensen PJ, Vinter FP, Sørensen P, Hansen EM, Thomsen IK, Jørgensen U, Jacobsen B (2012) Virkemidler til Nreduktion–potentialer og effekter. Notat fra DCE-Nationalt Center for Miljø og Energi

  • Asmus RM, Asmus H (1991) Mussel beds: limiting or promoting phytoplankton. J Exp Mar Biol Ecol 148:215–232

    Article  Google Scholar 

  • Asmus H, Asmus RM, Prins TC, Dankers N, Francés G, Maaß B, Reise K (1992) Benthic-pelagic flux rates on mussel beds: tunnel and tidal flume methodology compared. Helgol Meeresunters 46:341–361

    Article  Google Scholar 

  • Aure J, Strohmeier T, Strand O (2007) Modelling current speed and carrying capacity in long-line blue mussel (Mytilus edulis) farms. Aquac Res 38:304–312. doi:10.1111/j.1365-2109.2007.01669.x

    Article  Google Scholar 

  • Beck MW, Brumbaugh RD, Airoldi L, Carranza A, Coen LD, Crawford C, Defeo O, Edgar GJ, Hancock B, Kay MC, Lenihan HS, Luckenbach MW, Toropova CL, Zhang G, Guo X (2011) Oyster reefs at risk and recommendations for conservation, restoration, and management. Bioscience 61:107–116. doi:10.1525/bio.2011.61.2.5

    Article  Google Scholar 

  • Berge GM, Austreng E (1989) Blue mussel in feed for rainbow trout. Aquaculture 81:79–90

    Article  Google Scholar 

  • Bricker SB, Rice KC, Bricker OP (2014) From headwaters to coast: influence of human activities on water quality of the Potomac River Estuary. Aquat Geochem 20:291–323. doi:10.1007/s10498-014-9226-y

    Article  CAS  Google Scholar 

  • Caraco NF, Cole JJ, Strayer DL (2006) Top-down control from the bottom: regulation of eutrophication in a large river by benthic grazing. Limnol Oceanogr 51:664–670. doi:10.2307/4499619

    Article  Google Scholar 

  • Carlsson MS, Holmer M, Petersen JK (2009) Seasonal and spatial variations of benthic impacts of mussel longline farming in a eutrophc Danish fjord, Limfjorden. J Shellfish Res 28:791–801. doi:10.2983/035.028.0408

    Article  Google Scholar 

  • Carlsson MS, Engstrom P, Lindahl O, Ljungqvist L, Petersen JK, Svanberg L, Holmer M (2012) Effects of mussel farms on the benthic nitrogen cycle on the Swedish west coast. Aquac Environ Interact 2:177–191. doi:10.3354/aei00039

    Article  Google Scholar 

  • Carmichael RH, Walton W, Clark H (2012) Bivalve-enhanced nitrogen removal from coastal estuaries. Can J Fish Aquat Sci 69:1131–1149. doi:10.1139/F2012-057

    Article  CAS  Google Scholar 

  • Cerco CF, Noel MR (2007) Can oyster restoration reverse cultural eutrophication in Chesapeake Bay? Estuaries Coasts 30:331–343

    Article  Google Scholar 

  • Chamberlain J, Fernandes TF, Read P, Nickell TD, Davies IM (2001) Impacts of biodeposits from suspended mussel (Mytilus edulis L.) culture on the surrounding surficial sediments. ICES J Mar Sci 58:411–416. doi:10.1006/jmsc.2000.1037

    Article  Google Scholar 

  • Chopin T, Buschmann AH, Halling C, Troell M, Kautsky N, Neori A, Kraemer GP, Zertuche-González JA, Yarish C, Neefus C (2001) Integrating seaweeds into marine aquaculture systems: a key toward sustainability. J Phycol 37:975–986. doi:10.1046/j.1529-8817.2001.01137.x

    Article  Google Scholar 

  • Christensen PB, Møhlenberg F, Krause-Jensen D, Jensen HS, Rysgaard S, Clausen P, Sortkjær O, Schlüter L, Josefsen SB, Jürgensen C, Andersen FØ, Thomassen J, Thomsen MS, Nielsen LP (1994) Stoftransport og stofomsætning i Kertinge Nor/Kerteminde Fjord. Miljøstyrelsen. 128 s. (Havforskning fra Miljøstyrelsen, Vol. 43)

  • Christensen PB, Glud RN, Dalsgaard T, Gillespie P (2003) Impacts of longline mussel farming on oxygen and nitrogen dynamics and biological communities of coastal sediments. Aquaculture 218:567–588

    Article  Google Scholar 

  • Clausen I, Riisgård H (1996) Growth, filtration and respiration in the mussel Mytilus edulis: no evidence for physiological regulation of the filter-pump to nutritional needs. Mar Ecol Prog Ser 141:37–45

    Article  Google Scholar 

  • Cloern JE (1982) Does the benthos control phytoplankton in South San Francisco Bay? Mar Ecol Prog Ser 9:191–202

    Article  Google Scholar 

  • Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253

    Article  CAS  Google Scholar 

  • Cranford P, Hill P (1999) Seasonal variation in food utilisation by the suspension-feeding bivalve molluscs Mytilus edulis and Placopecten magellanicus. Mar Ecol Prog Ser 190:223–239

    Article  Google Scholar 

  • Cranford PJ, Strain PM, Dowd M, Hargrave BT, Grant J, Archambault M-C (2007) Influence of mussel aquaculture on nitrogen dynamics in a nutrient enriched coastal embayment. Mar Ecol Prog Ser 347:61–78. doi:10.3354/meps06997

    Article  CAS  Google Scholar 

  • Cranford PJ, Reid GK, Robinson SMC (2013) Open water integrated multi-trophic aquaculture: constraints on the effectiveness of mussels as an organic extractive component. Aquac Environ Interact 4:163–173. doi:10.3354/aei00081

    Article  Google Scholar 

  • Cranford PJ, Duarte P, Robinson SMC, Fernández-Reiriz MJ, Labarta U (2014) Suspended particulate matter depletion and flow modification inside mussel (Mytilus galloprovincialis) culture rafts in the Ría de Betanzos, Spain. J Exp Mar Biol Ecol 452:70–81. doi:10.1016/j.jembe.2013.12.005

    Article  Google Scholar 

  • Crawford CM, Macleod CKA, Mitchell IM (2003) Effects of shellfish farming on the benthic environment. Aquaculture 224:117–140. doi:10.1016/s0044-8486(03)00210-2

    Article  Google Scholar 

  • Dahlbäck D, Gunnarsson L (1981) Sedimentation and sulfate reduction under a mussel culture. Mar Biol 63:269–275

    Article  Google Scholar 

  • Dame RF (2012) Ecology of marine bivalves: an ecosystem approach. CRC Press, Boca Raton

    Google Scholar 

  • Dame RF, Prins TC (1998) Bivalve carrying capacity in coastal ecosystems. Aquat Ecol 31:409–421

    Article  Google Scholar 

  • D’Amours O, Archambault P, McKindsey CW, Johnson LE (2008) Local enhancement of epibenthic macrofauna by aquaculture activities. Mar Ecol Prog Ser 371:73–84. doi:10.3354/meps07672

    Article  Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929. doi:10.1126/science.1156401

    Article  CAS  PubMed  Google Scholar 

  • Diaz R, Selman M, Chique C (2011) Eutrophication and hypoxia: nutrient pollution in coastal waters. In: docs.wri.org/wri_eutrophic_hypoxic_dataset_2011-03.xls (ed). World Resources Institute, http://www.wri.org/resources/map

  • Douvere F (2008) The importance of marine spatial planning in advancing ecosystem-based sea use management. Mar Policy 32:762–771

    Article  Google Scholar 

  • Erichsen AC, Timmermann K, Kaas H, Markager S, Christensen J, Murray C (2014) Modeller for Danske Fjorde og Kystnære Havområder–Del 1: Metode til bestemmelse af målbelastning. Rapport fra DHI og Aarhus Universitet. 28 p. http://dce.au.dk/fileadmin/dce.au.dk/Udgivelser/Notater_2014/MVV_documentation_DCE_DHI_metode-slutrap-del1.pdf

  • Eriksen J, Jensen PN, Jakobsen BH (2014) Virkemidler til realisering af 2. Generations vandplaner og målrettet arealregulering, Århus

  • Fahnenstiel GL, Bridgeman TB, Lang GA, McCormick MJ, Nalepa TF (1995a) Phytoplankton productivity in Saginaw Bay, Lake Huron: effects of zebra mussel (Dreissena polymorpha) colonization. J Great Lakes Res 21:465–475

    Google Scholar 

  • Fahnenstiel GL, Lang GA, Nalepa TF, Johengen TH (1995b) Effects of zebra mussel (Dreissena polymorpha) colonization on water quality parameters in Saginaw Bay, Lake Huron. J Great Lakes Res 21:435–448. doi:10.1016/S0380-1330(95)71057-7

    Article  CAS  Google Scholar 

  • Falconer L, Hunter D-C, Telfer TC, Ross LG (2013) Visual, seascape and landscape analysis to support coastal aquaculture site selection. Land Use Policy 34:1–10. doi:10.1016/j.landusepol.2013.02.002

    Article  Google Scholar 

  • Farber S, Costanza R, Childers DL, Erickson J, Gross K, Grove M, Hopkinson CS, Kahn J, Pincetl S, Troy A, Warren P, Wilson M (2006) Linking ecology and economics for ecosystem management. Bioscience 56:121–133. doi:10.1641/0006-3568(2006)056[0121:leaefe]2.0.co;2

    Article  Google Scholar 

  • Ferreira JG, Saurel C, Lencart e Silva JD, Nunes JP, Vazquez F (2014) Modelling of interactions between inshore and offshore aquaculture. Aquaculture 426:154–164. doi:10.1016/j.aquaculture.2014.01.030

    Article  Google Scholar 

  • Fréchette M, Bourget E (1985) Energy flow between the pelagic and benthic zones: factors controlling particulate organic matter available to an intertidal mussel bed. Can J Fish Aquat Sci 42:1158–1165

    Article  Google Scholar 

  • Fréchette M, Butman CA, Geyer WR (1989) The importance of boundary-layer flows in supplying phytoplankton to the benthic suspension feeder, Mytilus edulis L. Limnol Oceanogr 34:19–36. doi:10.2307/2837058

    Article  Google Scholar 

  • Fuentes J, Gregorio V, Giráldez R, Molares J (2000) Within-raft variability of the growth rate of mussels, Mytilus galloprovincialis, cultivated in the Ría de Arousa (NW Spain). Aquaculture 189:39–52

    Article  Google Scholar 

  • Gallardi D (2014) Effects of bivalve aquaculture on the environment and their possible mitigation: a review. Fish Aquac J. doi:10.4172/2150-3508.1000105

    Google Scholar 

  • Gilbert F, Souchu P, Bianchi M, Bonin P (1997) Influence of shellfish farming activities on nitrification, nitrate reduction to ammonium and denitrification at the water-sediment interface of the Thau lagoon, France. Mar Ecol Prog Ser 151:143–153

    Article  CAS  Google Scholar 

  • Giles H, Pilditch CA (2006) Effects of mussel (Perna canaliculus) biodeposit decomposition on benthic respiration and nutrient fluxes. Mar Biol 150:261–271. doi:10.1007/s00227-006-0348-7

    Article  CAS  Google Scholar 

  • Grant J, Hatcher A, Scott DB, Pocklington P, Shafer CT, Winters GV (1995) A multidisciplinary approach to evaluating impacts of shellfish aquaculture on benthic communities. Estuaries 18:124–144

    Article  CAS  Google Scholar 

  • Haamer J (1996) Improving water quality in a eutrophied fjord system with mussel farming. Ambio 25:356–362

    Google Scholar 

  • Haamer J, Rohde J (2000) Mussel Mytilus edulis (L.) filtering of the Baltic Sea outflow through the Oresund—an example of a natural, large-scale ecosystem restoration. J Shellfish Res 19:413–421

    Google Scholar 

  • Hart R (2003) Dynamic pollution control—time lags and optimal restoration of marine ecosystems. Ecol Econ 47:79–93. doi:10.1016/j.ecolecon.2002.09.002

    Article  Google Scholar 

  • Hartstein ND, Stevens CL (2005) Deposition beneath long-line mussel farms. Aquacult Eng 33:192–213. doi:10.1016/j.aquaeng.2005.01.002

    Article  Google Scholar 

  • Hasler B, Hansen LB, Andersen HE, Konrad M (2015) Modellering af omkostningseffektive reduktioner af kvælstoftilførslerne til Limfjorden. Notat fra DCE—Nationalt Center for Miljø og Energi, Aarhus University

  • Hatcher A, Grant J, Schofield B (1994) Effects of suspended mussel culture (Mytilus spp.) on sedimentation, benthic respiration and sediment nutrient dynamics in a coastal bay. Mar Ecol Prog Ser 115:219–235

    Article  Google Scholar 

  • Heasman KG, Pitcher GC, McQuaid CD, Hecht T (1998) Shellfish mariculture in the Benguela system: raft culture of Mytilus galloprovincialis and the effect of rope spacing on food extraction, growth rate, production, and condition of mussels. J Shellfish Res 17:33–39

    Google Scholar 

  • Herman PMJ, Scholten H (1990) Can suspension-feeders stabilise estuarine ecosystems? In: Barnes MA, Gibson RN (eds) Trophic relations in the marine environment. University Press, Aberdeen, pp 104–116

    Google Scholar 

  • Higgins CB, Stephenson K, Brown BL (2011) Nutrient bioassimilation capacity of aquacultured oysters: quantification of an ecosystem service. J Environ Qual 40:271–277. doi:10.2134/jeq2010.0203

    Article  CAS  PubMed  Google Scholar 

  • Holmer M, Thorsen SW, Carlsson MS, Kjerulf PJ (2014) Pelagic and benthic nutrient regeneration processes in mussel cultures (Mytilus edulis) in a Eutrophic Coastal Area (Skive Fjord, Denmark). Estuar Coasts. doi:10.1007/s12237-014-9864-8

    Google Scholar 

  • Hossain MS, Chowdhury SR, Das NG, Sharifuzzaman SM, Sultana A (2009) Integration of GIS and multicriteria decision analysis for urban aquaculture development in Bangladesh. Landsc Urban Plan 90:119–133. doi:10.1016/j.landurbplan.2008.10.020

    Article  Google Scholar 

  • Jansen HM, Strand O, Strohmeier T, Krogness C, Verdegem M, Smaal A (2011) Seasonal variability in nutrient regeneration by mussel Mytilus edulis rope culture in oligotrophic systems. Mar Ecol Prog Ser 431:137–149. doi:10.3354/meps09095

    Article  CAS  Google Scholar 

  • Jansen HM, Strand O, Verdegem M, Smaal A (2012) Accumulation, release and turnover of nutrients (C-N-P-Si) by the blue mussel Mytilus edulis under oligotrophic conditions. J Exp Mar Biol Ecol 416:185–195. doi:10.1016/j.jembe.2011.11.009

    Article  CAS  Google Scholar 

  • Jönsson L, Elwinger K (2009) Mussel meal as a replacement for fish meal in feeds for organic poultry—a pilot short-term study. Acta Agric Scand Sect A Anim Sci 59:22–27. doi:10.1080/09064700902730158

    Google Scholar 

  • Jönsson L, Holm L (2010) Effects of toxic and non-toxic blue mussel meal on health and product quality of laying hens. J Anim Physiol Anim Nutr 94:405–412. doi:10.1111/j.1439-0396.2009.00922.x

    Article  CAS  Google Scholar 

  • Jönsson L, Wall H, Tauson R (2011) Production and egg quality in layers fed organic diets with mussel meal. Animal 5:387–393. doi:10.1017/S1751731110001977

    Article  PubMed  CAS  Google Scholar 

  • Kaspar HF, Gillespie PA, Boyer IC, MacKenzie AL (1985) Effects of mussel aquaculture on the nitrogen cycle and benthic communities in Kenepuru Sound, Marlborough Sounds, New Zealand. Mar Biol 85:127–136

    Article  CAS  Google Scholar 

  • Kellogg ML, Smyth AR, Luckenbach MW, Carmichael RH, Brown BL, Cornwell JC, Piehler MF, Owens MS, Dalrymple DJ, Higgins CB (2014) Use of oysters to mitigate eutrophication in coastal waters. Estuar Coast Shelf Sci 151:156–168. doi:10.1016/j.ecss.2014.09.025

    Article  CAS  Google Scholar 

  • Kumar M, Cripps S (2012) Environmental aspects. In: John SL, Paul CS (eds) Aquaculture: farming aquatic animals and plants. Blackwell, Hoboken, pp 84–106

  • Lindahl O (2011) Mussel farming as a tool for re-eutrophication of coastal waters: experiences from Sweden. In: Shumway S (ed) Shellfish aquaculture and the environment. Wiley, pp 217–237

  • Lindahl O, Kollberg S (2009) Can the EU agri-environmental aid program be extended into the coastal zone to combat eutrophication? Hydrobiologia 629:59–64. doi:10.1007/s10750-009-9771-3

    Article  Google Scholar 

  • Lindahl T, Söderqvist T (2011) Who wants to save the Baltic Sea when the success is uncertain? Reg Environ Change 11:133–147. doi:10.1007/s10113-010-0125-5

    Article  Google Scholar 

  • Lindahl O, Hart R, Hernroth B, Kollberg S, Loo LO, Olrog L, Rehnstam-Holm AS, Svensson J, Svensson S, Syversen U (2005) Improving marine water quality by mussel farming: a profitable solution for Swedish society. Ambio 34:131–138. doi:10.1639/0044-7447(2005)034[0131:imwqbm]2.0.co;2

    Article  PubMed  Google Scholar 

  • Lindahl O, Cahill B, Zaiko A (2012) Mussels cultivation. In: Schultz-Zeden A, Matczak M (eds) Submariner compendium an assessment of innovative and sustainable uses of baltic marine resources. Maritime Institute in Gdańsk, Gdańsk

  • Lindqvist M (2007) Värdet av musselodlingar som reningsåtgärd i en kostnadseffektiv rening av kväve och fosfor från Östersjön. SLU, Institutionen för ekonomi. ExamensarbeteNr 517 Magisteruppsats i nationalekonomi, Uppsala

  • Maar M, Timmermann K, Petersen JK, Gustafsson KE, Storm LM (2010) A model study of the regulation of blue mussels by nutrient loadings and water column stability in a shallow estuary, the Limfjorden. J Sea Res 64:322–333. doi:10.1016/j.seares.2010.04.007

    Article  Google Scholar 

  • Maar M, Saurel C, Landes A, Dolmer P, Petersen JK (2015) Growth potential of blue mussels (M. edulis) exposed to different salinities evaluated by a Dynamic Energy Budget model. J Mar Syst 148:48–55. doi:10.1016/j.jmarsys.2015.02.003

    Article  Google Scholar 

  • Maltby L (2013) Ecosystem services and the protection, restoration, and management of ecosystems exposed to chemical stressors. Environ Toxicol Chem 32:974–983. doi:10.1002/etc.2212

    Article  CAS  PubMed  Google Scholar 

  • Mazouni N, Gaertner JC, DeslousPaoli JM, Landrein S, dOedenberg MG (1996) Nutrient and oxygen exchanges at the water-sediment interface in a shellfish farming lagoon (Thau, France). J Exp Mar Biol Ecol 205:91–113. doi:10.1016/s0022-0981(96)02594-4

    Article  Google Scholar 

  • Mazouni N, Gaertner J-C, Deslous-Paoli J-M (1998) Influence of oyster culture on water column characteristics in a coastal lagoon (Thau, France). Hydrobiologia 373–374:149–156

    Article  Google Scholar 

  • Mazouni N, Gaertner JC, Deslous-Paoli JM (2001) Composition of biofouling communities on suspended oyster cultures: an in situ study of their interactions with the water column. Mar Ecol Prog Ser 214:93–102

    Article  CAS  Google Scholar 

  • Meeuwig JJ (1999) Predicting coastal eutrophication from land-use: an empirical approach to small non-stratified estuaries. Mar Ecol Prog Ser 176:231–241

    Article  CAS  Google Scholar 

  • Møhlenberg F (1995) Regulating mechanisms of phytoplankton growth and biomass in a shallow estuary. Ophelia 42:239–256

    Article  Google Scholar 

  • Møhlenberg F (1999) Effect of meteorology and nutrient load on oxygen depletion in a Danish micro-tidal estuary. Aquat Ecol 33:55–64

    Article  Google Scholar 

  • Møhlenberg SJ (2007) Blue mussel cultivation for nitrogen removal in fjords assessment of an alternative measure to comply with the water framework directive using Odense Fjord as a case study. Copenhagen University, Denmark

    Google Scholar 

  • Murray LG, Newell CR, Seed R (2007) Changes in the biodiversity of mussel assemblages induced by two methods of cultivation. J Shellfish Res 26:153–162. doi:10.2983/0730-8000(2007)26[153:citbom]2.0.co;2

    Article  Google Scholar 

  • Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, Nichols PD (2009) Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci USA 106:15103–15110. doi:10.1073/pnas.0905235106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neori A, Chopin T, Troell M, Buschmann AH, Kraemer GP, Halling C, Shpigel M, Yarish C (2004) Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modem mariculture. Aquaculture 231:361–391. doi:10.1016/j.aquaculture.2003.11.015

    Article  Google Scholar 

  • Newell RIE (2004) Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. J Shellfish Res 23:51–61

    Google Scholar 

  • Newell CR, Richardson J (2014) The effects of ambient and aquaculture structure hydrodynamics on the food supply and demand of mussel rafts. J Shellfish Res 33:257–272. doi:10.2983/035.033.0125

    Article  Google Scholar 

  • Newell RE, Fisher TR, Holyoke RR, Cornwell JC (2005) Influence of eastern oysters on nitrogen and phosphorus regeneration in Chesapeake Bay, USA. In: Dame R, Olenin S (eds) The comparative roles of suspension feeders in ecosystems. Springer, Berlin, pp 93–120

    Chapter  Google Scholar 

  • Nielsen P (2014) Future challenges and possibilities for the Danish long-line production of blue mussels, Mytilus edilus (L)—with special focus on filtration and bioenergetics. Faculty of Science, University of Copenhagen, Copenhagen

    Google Scholar 

  • Nizzoli D, Welsh DT, Fano EA, Viaroli P (2006) Impact of clam and mussel farming on benthic metabolism and nitrogen cycling, with emphasis on nitrate reduction pathways. Mar Ecol Prog Ser 315:151–165

    Article  CAS  Google Scholar 

  • Nizzoli D, Welsh DT, Viaroli P (2011) Seasonal nitrogen and phosphorus dynamics during benthic clam and suspended mussel cultivation. Mar Pollut Bull 62:1276–1287. doi:10.1016/j.marpolbul.2011.03.009

    Article  CAS  PubMed  Google Scholar 

  • Norén F, Haamer J, Lindahl O (1999) Changes in the plankton community passing a Mytilus edulis mussel bed. Mar Ecol Prog Ser 191:187–194

    Article  Google Scholar 

  • Nørgaard JV, Petersen JK, Tørring DB, Jørgensen H, Lærke HN (2015) Chemical composition and standardized ileal digestibility of protein and amino acids from blue mussel, starfish, and fish silage in pigs. Anim Feed Sci Technol 205:90–97. doi:10.1016/j.anifeedsci.2015.04.005

    Article  CAS  Google Scholar 

  • Nunes J, Ferreira J, Gazeau F, Lencart-Silva J, Zhang X, Zhu M, Fang J (2003) A model for sustainable management of shellfish polyculture in coastal bays. Aquaculture 219:257–277

    Article  Google Scholar 

  • Nunes JP, Ferreira JG, Bricker SB, O’Loan B, Dabrowski T, Dallaghan B, Hawkins AJS, O’Connor B, O’Carroll T (2011) Towards an ecosystem approach to aquaculture: assessment of sustainable shellfish cultivation at different scales of space, time and complexity. Aquaculture 315:369–383. doi:10.1016/j.aquaculture.2011.02.048

    Article  Google Scholar 

  • Officer CB, Smayda TJ, Mann R (1982) Benthic filter feeding: a natural eutrophication control. Mar Ecol Prog Ser 9:203–210

    Article  Google Scholar 

  • Olrog L, Christensson E (2008) Användning av musslor och musselrester som gödselmedel i jordbruket (Use of mussels and mussel waste as fertilizer in agriculture). Swedish Rural Economy and Agricultural Societies (in Swedish)

  • Pacific Shellfish Institute (2014) Shellfish at work—reducing nutrient pollution in the budd inlet watershed. Final project report for national estuary program toxics and nutrients

  • Palmer MA, Filoso S (2009) Restoration of ecosystem services for environmental markets. Science 325:575–576. doi:10.1126/science.1172976

    Article  CAS  PubMed  Google Scholar 

  • Perez OM, Telfer TC, Ross LG (2003) Use of GIS-based models for integrating and developing marine fish cages within the tourism industry in Tenerife (Canary Islands). Coast Manag 31:355–366. doi:10.1080/08920750390232992

    Article  Google Scholar 

  • Petersen JK (2004) Grazing on pelagic primary producers—the role of benthic suspension feeders in estuaries. In: Nielsen SL, Banta G, Pedersen MF (eds) Estuarine nutrient cycling: the influence of primary producers. Kluwer Academic, Dordrecht, pp 129–152

    Chapter  Google Scholar 

  • Petersen JK, Mattesen S (2011) Muslinger som virkemiddel: Fjernelse af næringssalte gennem kompensationsopdræt—og kommerciel udnyttelse heraf. Rapport til Vækstforum Nordjylland

  • Petersen JK, Nielsen TG, van Duren L, Maar M (2008) Depletion of plankton in a raft culture of Mytilus galloprovincialis in Ría de Vigo, NW Spain. I. Phytoplankton. Aquat Biol 4:113–125. doi:10.3354/ab00124

    Article  Google Scholar 

  • Petersen JK, Maar M, Holmer M, Carlsson MS (2010) Muslinger som virkemiddel—Et pilotstudie. By- og Landskabsstyrelsen, p 41. http://www.naturstyrelsen.dk/NR/rdonlyres/F03D0455-7AD8-43EE-9937-44A95E977986/117066/muslinger_som_virkemiddel_version2.pdf

  • Petersen JK, Timmermann K, Carlsson M, Holmer M, Maar M, Lindahl O (2012) Mussel farming can be used as a mitigation tool—a reply. Mar Pollut Bull 64: 452–454; author reply 455–456. doi:10.1016/j.marpolbul.2011.11.027

  • Petersen JK, Hasler B, Timmermann K, Nielsen P, Torring DB, Larsen MM, Holmer M (2014) Mussels as a tool for mitigation of nutrients in the marine environment. Mar Pollut Bull 82:137–143. doi:10.1016/j.marpolbul.2014.03.006

    Article  CAS  PubMed  Google Scholar 

  • Petersen JK, Nielsen CF, Nørgaard JV, Steenfeldt S, Fitridge I (2015) Anvendelse af blåmuslinger til foder. Rapport til Vækstforum Nordjylland

  • Pires LMD, Ibeling BW, van Donk E (2010) Zebra mussels as a potential tool in the restoration of eutrophic shallow lakes dominated by toxic cyanobacteria. In: van der Velde G, Rajagopal S, bij de Vaate A (eds) The zebra mussel in Europe. Backhuys Publishers, Leiden, pp 331–342

  • Plew DR (2011) Shellfish farm-induced changes to tidal circulation in an embayment, and implications for seston depletion. Aquac Environ Interact 1:201–214. doi:10.3354/aei00020

    Article  Google Scholar 

  • Pollack JB, Yoskowitz D, Kim H-C, Montagna PA (2013) Role and value of nitrogen regulation provided by oysters (Crassostrea virginica) in the Mission-Aransas Estuary, Texas, USA. PLoS ONE. doi:10.1371/journal.pone.0065314

    Google Scholar 

  • Prins TC, Smaal AC (1994) The role of the blue mussel Mytilus edulis in the cycling of nutrients in the Oosterschelde estuary (The Netherlands). Hydrobiologia 282–283:413–429. doi:10.1007/BF00024645

    Article  Google Scholar 

  • Prins TC, Escaravage V, Smaal AC, Peeters JCH (1995) Nutrient cycling and phytoplankton dynamics in relation to mussel grazing in a mesocosm experiment. Ophelia 41:289–315

    Article  Google Scholar 

  • Prins TC, Smaal AC, Pouwer AJ, Danker N (1996) Filtration and resuspension of particulate matter and phytoplankton on an intertidal mussel bed in the Oosterchelde estuary (SW Netherlands). Mar Ecol Prog Ser 142:121–134

    Article  Google Scholar 

  • Prins TC, Smaal AC, Dame RF (1998) A review of the feedbacks between bivalve grazing and ecosysem processes. Aquat Ecol 31:349–359

    Article  Google Scholar 

  • Rabalais NN, Díaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7:585–619

    Article  CAS  Google Scholar 

  • Richard M, Archambault P, Thouzeau G, Desrosiers G (2006) Influence of suspended mussel lines on the biogeochemical fluxes in adjacent water in the Iles-de-la-Madeleine (Quebec, Canada). Can J Fish Aquat Sci 63:1198–1213. doi:10.1139/f06-030

    Article  CAS  Google Scholar 

  • Riemann B, Nielsen TG, Horsted SJ, Bjørnsen PK, Pock-Steen J (1988) Regulation of the phytoplankton biomass in estuarine enclosures. Mar Ecol Prog Ser 48:205–215

    Article  Google Scholar 

  • Riisgård HU (2001) On measurement of filtration rates in bivalves—the stony road to reliable data: review and interpretation. Mar Ecol Prog Ser 211:275–291

    Article  Google Scholar 

  • Riisgård HU, Kittner C, Seerup DF (2003) Regulation of opening state and filtration rate in filter-feeding bivalves (Cardium edule, Mytilus edulis, Mya arenaria) in response to low algal concentration. J Exp Mar Biol Ecol 284:105–127

    Article  Google Scholar 

  • Rosa M, Holohan BA, Shumway SE, Bullard SG, Wikfors GH, Morton S, Getchis T (2013) Biofouling ascidians on aquaculture gear as potential vectors of harmful algal introductions. Harmful Algae 23:1–7. doi:10.1016/j.hal.2012.11.008

    Article  Google Scholar 

  • Rose JM, Ferreira JG, Stephenson K, Bricker SB, Tedesco M, Wikfors GH (2012) Comment on Stadmark and Conley (2011) “Mussel farming as a nutrient reduction measure in the Baltic Sea: consideration of nutrient biogeochemical cycles”. Mar Pollut Bull 64: 449–451; author reply 455–446. doi:10.1016/j.marpolbul.2011.11.024

  • Rosland R, Bacher C, Strand Ø, Aure J, Strohmeier T (2011) Modelling growth variability in longline mussel farms as a function of stocking density and farm design. J Sea Res 66:318–330. doi:10.1016/j.seares.2011.04.009

    Article  Google Scholar 

  • Saurel C, Gascoigne JC, Palmer MR, Kaiser MJ (2007) In situ mussel feeding behavior in relation to multiple environmental factors: regulation through food concentration and tidal conditions. Limnol Oceanogr 52:1919–1929. doi:10.4319/lo.2007.52.5.1919

    Article  Google Scholar 

  • Saurel C, Ferreira JG, Cheney D, Suhrbier A, Dewey B, Davis J, Cordell J (2014) Ecosystem goods and services from Manila clam culture in Puget Sound: a modelling analysis. Aquac Environ Interact 5:255–270. doi:10.3354/aei00109

    Article  Google Scholar 

  • Schröder T, Stank J, Schernewski G, Krost P (2014) The impact of a mussel farm on water transparency in the Kiel Fjord. Ocean Coast Manag 101:42–52. doi:10.1016/j.ocecoaman.2014.04.034

    Article  Google Scholar 

  • Soto D, Aguilar-Manjarrez J, Brugère C, Angel D, Bailey C, Black K, Edwards P, Costa-Pierce B, Chopin T, Deudero S, Freeman S, Hambrey J, Hishamunda N, Knowler D, Silvert W, Marba N, Mathe S, Norambuena R, Simard F, Tett P, Troell M, Wainberg A (2008) Applying an ecosystem-based approach to aquaculture: principles, scales and some management measures. In: Soto D, Aguilar-Manjarrez J, Hishamunda N (eds) Building an ecosystem approach to aquaculture FAO/Universitat de les Illes Balears Expert Workshop 7–11 May 2007, Palma de Mallorca, Spain. FAO Fisheries and Aquaculture Proceedings, Rome

  • Souchu P, Vaquer A, Collos Y, Landrein S, Deslous-Paoli J-M, Bibent B (2001) Influence of shellfish farming activities on the biogeochemical composition of the water column in Thau lagoon. Mar Ecol Prog Ser 218:141–152

    Article  CAS  Google Scholar 

  • Stadmark J, Conley DJ (2011) Mussel farming as a nutrient reduction measure in the Baltic Sea: consideration of nutrient biogeochemical cycles. Mar Pollut Bull 62:1385–1388. doi:10.1016/j.marpolbul.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  • Stenton-Dozey J, Probyn T, Busby A (2001) Impact of mussel (Mytilus galloprovincialis) raft-culture on benthic macrofauna, in situ oxygen uptake, and nutrient fluxes in Saldanha Bay, South Africa. Can J Fish Aquat Sci 58:1021–1031. doi:10.1139/cjfas-58-5-1021

    Article  CAS  Google Scholar 

  • Stevens CL, Petersen JK (2011) Turbulent, stratified flow through a suspended shellfish canopy: implications for mussel farm design. Aquac Environ Interact 2:87–104. doi:10.3354/aei00033

    Article  Google Scholar 

  • Strohmeier T, Aure J, Duinker A, Castberg T, Svardal A, Strand Ø (2005) Flow reduction, seston depletion, meat content and distribution of diarrhetic shellfish toxins in a long-line blue mussel (Mytilus edulis) farm. J Shellfish Res 24:15–23

    Article  Google Scholar 

  • Strohmeier T, Duinker A, Strand O, Aure J (2008) Temporal and spatial variation in food availability and meat ratio in a longline mussel farm (Mytilus edulis). Aquaculture 276:83–90. doi:10.1016/j.aquaculture.2008.01.043

    Article  Google Scholar 

  • Stybel N, Fenske C, Schernewski G (2009) Mussel cultivation to improve water quality in the Szczecin Lagoon. J Coast Res 56:1459–1463

  • Tenore KR, Corral J, Gonzalez N (1985) Effects of intense mussel culture on food chain patterns and production in coastal Calicia, NW Spain

  • Tiller R, Brekken T, Bailey J (2012) Norwegian aquaculture expansion and Integrated Coastal Zone Management (ICZM): simmering conflicts and competing claims. Mar Policy 36:1086–1095. doi:10.1016/j.marpol.2012.02.023

    Article  Google Scholar 

  • Timmermann K, Bolding K, Maar M, Larsen J, Petersen JK (2015) Muslinger som marint virkemiddel til fjernelse af næringsstoffer -miljøeffekter på fjordskala Dansk Havforskermøde, København, Denmark, p 92. http://havforsk2015.geus.dk/xpdf/2018_havforsk_abstracts.pdf

  • Troell M, Joyce A, Chopin T, Neori A, Buschmann AH, Fang J-G (2009) Ecological engineering in aquaculture—Potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297:1–9. doi:10.1016/j.aquaculture.2009.09.010

    Article  Google Scholar 

  • Varennes E, Hanssen SA, Bonardelli J, Guillemette M (2013) Sea duck predation in mussel farms: the best nets for excluding common eiders safely and efficiently. Aquac Environ Interact 4:31–39. doi:10.3354/aei00072

    Article  Google Scholar 

  • Wang B, Wang Z (2011) Long-term variations in chlorophyll a and primary productivity in Jiaozhou Bay, China. J Mar Biol 2011:1–7. doi:10.1155/2011/594684

    Article  CAS  Google Scholar 

  • Weber A, Smit MGD, Collombon MT (2010) Eutrophication and algal blooms: zebra mussels as a weapon. In: van der Velde G, Rajagopal S, bij de Vaate A (eds) The zebra mussel in Europe. Backhuys Publishers, Leiden, pp 343–347

  • Wilding TA, Nickell TD (2013) Changes in benthos associated with mussel (Mytilus edulis L.) farms on the west-coast of Scotland. PLoS ONE. doi:10.1371/journal.pone.0068313

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the Danish Council for Strategic Research for the Mussels–Mitigation and Feed for Husbandry (MuMiHus) project, Grant Agreement No. 09-066983 and all our colleagues participating in the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Kjerulf Petersen.

Additional information

Guest editors: Elena Mente and Aad Smaal/European Aquaculture Development since 1993: The benefits of aquaculture to Europe and the perspectives of European aquaculture production.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petersen, J.K., Saurel, C., Nielsen, P. et al. The use of shellfish for eutrophication control. Aquacult Int 24, 857–878 (2016). https://doi.org/10.1007/s10499-015-9953-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-015-9953-0

Keywords

Navigation