Skip to main content

Aquaculture Water Quality Index: a low-cost index to accelerate aquaculture development in Indonesia

Abstract

Due to a lack of the related data, there were no simple water indexes available for indicating water quality. Motivated by the fact that many lakes and reservoirs in Indonesia have been polluted because of aquacultural activity, this paper proposed a Water Quality Index, called the Aquaculture Water Quality Index (AWQI), and presented the development of practical tool to aid the development of aquaculture in Indonesia. Specific purposes included: (a) providing a brief summary of the assessment results of the existing WQI; (b) developing the AWQI method for applying in an aquacultural context; (c) implementing the AWQI method in Depok Area (Indonesia) as study area. An AHP method was also processed to define the weights of selected water quality parameters: DO, ammonia, pH, and fecal coliform. The AWQI had several features: (a) a low-cost water quality monitoring program that could be used by developing countries; (b) a useful tool for water resource agencies, especially for local agencies, to manage waterbodies and to raise public awareness of water pollution for its data, as its data could be easily understood and interpreted.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

AHP:

Analytical hierarchy process

AWQI:

Aquaculture Water Quality Index

MDE:

Malaysian Department of Environment

NSF:

National Sanitation Foundation

RPI:

River Pollution Index

WQI:

Water Quality Index

References

  • Abeysinghe DH, Shanableh A, Rigden B (1996) Biofilters for water reuse in aquaculture. Water Sci Technol 34(11):253–260. doi:10.1016/S0273-1223(96)00845-1

    CAS  Article  Google Scholar 

  • Al-Bassam AM, Ai-Rumikhani YA (2003) Integrated hydrochemical method of water quality assessment for irrigation in arid areas: application to the Jilh aquifer. Saudi Arab J Afr Earth Sci 36(4):345–356. doi:10.1016/S0899-5362(03)00046-0

    CAS  Article  Google Scholar 

  • Anderson LE, Manning RE, Monz CA, Goonan KA (2012) Indicators and standards of quality for paddling on Lake Champlain. J Gt Lakes Res 38:150–156

    Article  Google Scholar 

  • Benitez J, Delgado-Galvan X, Izquierdo J, Perez-Garcia R (2011) Achieving matrix consistency in AHP through linearization. Appl Math Model 35(9):4449–4457. doi:10.1016/j.apm.2011.03.013

    Article  Google Scholar 

  • Bordalo AA, Nilsumranchit W, Chalermwat K (2001) Water quality and uses of the Bangpakong River (Eastern Thailand). Water Res 35(15):3635–3642. doi:10.1016/S0043-1354(01)00079-3

    PubMed  CAS  Article  Google Scholar 

  • Bordalo AA, Teixeira R, Wiebe WJ (2006) A Water Quality Index applied to an international shared river basin: the case of the douro river. Environ Manag 38(6):910–920. doi:10.1007/s00267-004-0037-6

    Article  Google Scholar 

  • Bosma RH, Verdegem MCJ (2011) Sustainable aquaculture in ponds: principles, practices and limits. Livest Sci 139(1–2):58–68

    Article  Google Scholar 

  • Buras N, Duek L, Niv S, Hepher B, Sandbank E (1987) Microbiological aspects of fish grown in treated wastewater. Water Res 21(1):1–10. doi:10.1016/0043-1354(87)90092-3

    Article  Google Scholar 

  • Chakraborty S, Dey S (2006) Design of an analytic-hierarchy-process-based expert system for non-traditional machining process selection. Int J Adv Manuf Technol 31(5–6):490–500. doi:10.1007/s00170-005-0216-5

    Article  Google Scholar 

  • Chapman G, Fernando CH (1994) The diets and related aspects of feeding of Nile tilapia (Oreochromis niloticus L.) and common carp (Cyprinus carpio L.) in lowland rice fields in northeast Thailand. Aquaculture 123(3–4):281–307. doi:10.1016/0044-8486(94)90066-3

    Article  Google Scholar 

  • Cho KH, Kang J-H, Ki SJ, Park Y, Cha SM, Kim JH (2009) Determination of the optimal parameters in regression models for the prediction of chlorophyll-a: a case study of the Yeongsan Reservoir. Korea Sci Total Environ 407(8):2536–2545. doi:10.1016/j.scitotenv.2009.01.017

    PubMed  CAS  Article  Google Scholar 

  • de Donno A, Montagna MT, de Rinaldis A, Zonno V, Gabutti G (2002) Microbiological parameters in brackish water pond used for extensive and semi-intensive fish-culture: acquatina. Water Air Soil Pollut 134(1–4):205–214

    Article  Google Scholar 

  • Effendie I, Nirmala K, Saputra UH, Sudrajat SO, Zairin M, Kurokura H (2005) Water quality fluctuations under floating net cages for fish culture in Lake Cirata and its impact on fish survival. Fish Sci 71(5):972–977

    CAS  Article  Google Scholar 

  • El-Shafai SA, Gijzen HJ, Nasr FA, El-Gohary FA (2004) Microbial quality of tilapia reared in fecal-contaminated ponds. Environ Res 95(2):231–238. doi:10.1016/j.envres.2004.01.002

    PubMed  CAS  Article  Google Scholar 

  • Ferreira NC, Bonetti C, Seiffert WQ (2011) Hydrological and water quality indices as management tools in marine shrimp culture. Aquaculture 318(3–4):425–433. doi:10.1016/j.aquaculture.2011.05.045

    Article  Google Scholar 

  • Frei M, Razzak MA, Hossain MM, Oehme M, Dewan S, Becker K (2007) Performance of common carp, Cyprinus carpio L. and Nile tilapia, Oreochromis niloticus (L.) in integrated rice–fish culture in Bangladesh. Aquaculture 262(2–4):250–259. doi:10.1016/j.aquaculture.2006.11.019

    Article  Google Scholar 

  • Garcia-Marin P, Cabaco S, Hernandez I, Vergara JJ, Silva J, Santos R (2013) Multi-metric index based on the seagrass Zostera noltii (ZoNI) for ecological quality assessment of coastal and estuarine systems in SW Iberian Peninsula. Mar Pollut Bull 68(1–2):46–54. doi:10.1016/j.marpolbul.2012.12.025

    PubMed  CAS  Article  Google Scholar 

  • Gharibi H, Sowlat MH, Mahvi AH, Mahmoudzadeh H, Arabalibeik H, Keshavarz M, Karimzadeh N, Hassani G (2012) Development of a dairy cattle drinking Water Quality Index (DCWQI) based on fuzzy inference systems. Ecol Indic 20:228–237

    CAS  Article  Google Scholar 

  • Girsang A, Tsai C-W, Yang C-S (2014) Ant algorithm for modifying an inconsistent pairwise weighting matrix in an analytic hierarchy process. Neural Comput Applic. doi:10.1007/s00521-014-1630-0

    Google Scholar 

  • Goss M, Richards C (2008) Development of a risk-based index for source water protection planning, which supports the reduction of pathogens from agricultural activity entering water resources. J Environ Manag 87(4):623–632

    Article  Google Scholar 

  • Harnisz M, Tucholski S (2010) Microbial quality of common carp and pikeperch fingerlings cultured in a pond fed with treated wastewater. Ecol Eng 36(4):466–470. doi:10.1016/j.ecoleng.2009.11.015

    Article  Google Scholar 

  • Hayati E, Majnounian B, Abdi E, Sessions J, Makhdoum M (2013) An expert-based approach to forest road network planning by combining Delphi and spatial multi-criteria evaluation. Environ Monit Assess 185(2):1767–1776. doi:10.1007/s10661-012-2666-1

    PubMed  Article  Google Scholar 

  • Herricks EE, Suen JP (2006) Integrative analysis of water quality and physical habitat in the ecological design of water resources projects. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 41(7):1303–1314. doi:10.1080/10934520600656927

    CAS  Article  Google Scholar 

  • Hlophe SN, Moyo NAG (2013) The aquaculture potential of Tilapia rendalli in relation to its feeding habits and digestive capabilities. Phys Chem Earth Parts A/B/C 66:33–37. doi:10.1016/j.pce.2013.09.006

    Article  Google Scholar 

  • Ho W (2008) Integrated analytic hierarchy process and its applications—a literature review. Eur J Oper Res 186(1):211–228. doi:10.1016/j.ejor.2007.01.004

    Article  Google Scholar 

  • Horton RK (1965) An index number system for rating water quality. J Water Pollut Control Fed 37:300–306

    Google Scholar 

  • Huang W, Yano S, Zhang JM, Wang YR (2013) Application of analytic hierarchy process in selecting a biological indicator for a river flow restoration. Ecol Indic 25:180–183. doi:10.1016/j.ecolind.2012.09.017

    Article  Google Scholar 

  • Jonnalagadda SB, Mhere G (2001) Water quality of the Odzi River in the Eastern Highlands of Zimbabwe. Water Res 35(10):2371–2376. doi:10.1016/S0043-1354(00)00533-9

    PubMed  CAS  Article  Google Scholar 

  • Kainulainen T, Leskinen P, Korhonen P, Haara A, Hujala T (2009) A statistical approach to assessing interval scale preferences in discrete choice problems. J Oper Res Soc 60(2):252–258. doi:10.1057/palgrave.jors.2602554

    Article  Google Scholar 

  • Kamizoulis G, Saliba L (2004) Development of coastal recreational water quality standards in the mediterranean. Environ Int 30(6):841–854. doi:10.1016/j.envint.2003.12.011

    PubMed  CAS  Article  Google Scholar 

  • Kannel PR, Lee S, Lee YS, Kanel SR, Khan SP (2007) Application of water quality indices and dissolved oxygen as indicators for river water classification and urban impact assessment. Environ Monit Assess 132(1–3):93–110. doi:10.1007/s10661-006-9505-1

    PubMed  CAS  Article  Google Scholar 

  • Karbassi AR, Hosseini FMM, Baghvand A, Nazariha M (2011) Development of Water Quality Index (WQI) for Gorganrood River. Int J Environ Res 5(4):1041–1046

    CAS  Google Scholar 

  • Kay D (1988) Coastal bathing water-quality—the application of water-quality standards to Welsh Beaches. Appl Geogr 8(2):117–134. doi:10.1016/0143-6228(88)90028-8

    Article  Google Scholar 

  • Koçer MAT, Sevgili H (2014) Parameters selection for Water Quality Index in the assessment of the environmental impacts of land-based trout farms. Ecol Indic 36:672–681. doi:10.1016/j.ecolind.2013.09.034

    Article  Google Scholar 

  • Liou SM, Lo SL, Wang SH (2004) A generalized Water Quality Index for Taiwan. Environ Monit Assess 96(1–3):35–52

    PubMed  CAS  Article  Google Scholar 

  • Marino FJ, Martinezmanzanares E, Morinigo MA, Borrego JJ (1995) Applicability of the recreational water-quality standard guidelines. Water Sci Technol 31(5–6):27–31. doi:10.1016/0273-1223(95)00235-F

    Article  Google Scholar 

  • McDaniel NK, Sugiura SH, Kehler T, Fletcher JW, Coloso RM, Weis P, Ferraris RP (2005) Dissolved oxygen and dietary phosphorus modulate utilization and effluent partitioning of phosphorus in rainbow trout (Oncorhynchus mykiss) aquaculture. Environ Pollut 138(2):350–357. doi:10.1016/j.envpol.2005.03.004

    PubMed  CAS  Article  Google Scholar 

  • Mohebbi MR, Saeedi R, Montazeri A, Azam Vaghefi K, Labbafi S, Oktaie S, Abtahi M, Mohagheghian A (2013) Assessment of water quality in groundwater resources of Iran using a modified drinking Water Quality Index (DWQI). Ecol Indic 30:28–34. doi:10.1016/j.ecolind.2013.02.008

    CAS  Article  Google Scholar 

  • Mulholland PJ, Houser JN, Maloney KO (2005) Stream diurnal dissolved oxygen profiles as indicators of in-stream metabolism and disturbance effects: Fort Benning as a case study. Ecol Indic 5(3):243–252

    CAS  Article  Google Scholar 

  • Mungkung R, Aubin J, Prihadi TH, Slembrouck J, van der Werf HMG, Legendre M (2013) Life cycle assessment for environmentally sustainable aquaculture management: a case study of combined aquaculture systems for carp and tilapia. J Clean Prod 57:249–256. doi:10.1016/j.jclepro.2013.05.029

    Article  Google Scholar 

  • Nagels JW, Davies-Colley RJ, Smith DG (2001) A Water Quality Index for contact recreation in New Zealand. Water Sci Technol 43(5):285–292

    PubMed  CAS  Google Scholar 

  • Naigaga I, Kaiser H, Muller WJ, Ojok L, Mbabazi D, Magezi G, Muhumuza E (2011) Fish as bioindicators in aquatic environmental pollution assessment: a case study in Lake Victoria wetlands, Uganda. Phys Chem Earth Parts A/B/C 36(14–15):918–928. doi:10.1016/j.pce.2011.07.066

    Article  Google Scholar 

  • Neto JM, Barroso DV, Barría P (2013) Seagrass quality index (SQI), a water framework directive compliant tool for the assessment of transitional and coastal intertidal areas. Ecol Indic 30:130–137. doi:10.1016/j.ecolind.2013.02.015

    Article  Google Scholar 

  • Ntengwe FW, Edema MO (2008) Physico-chemical and microbiological characteristics of water for fish production using small ponds. Phys Chem Earth Parts A/B/C 33(8–13):701–707. doi:10.1016/j.pce.2008.06.032

    Article  Google Scholar 

  • Ooshaksaraie L, Basri NEA, Abu Bakar A, Maulud KNA (2012) RP(3)CA: an expert system applied in stormwater management plan for construction sites in Malaysia. Expert Syst Appl 39(3):3692–3701. doi:10.1016/j.eswa.2011.09.064

    Article  Google Scholar 

  • Pawitan H, Haryani GS (2011) Water resources, sustainability and societal livelihoods in Indonesia. Ecohydrol Hydrobiol 11(3–4):231–243. doi:10.2478/v10104-011-0050-3

    Article  Google Scholar 

  • Pesce SF, Wunderlin DA (2000) Use of water quality indices to verify the impact of Cordoba City (Argentina) on Suquia River. Water Res 34(11):2915–2926

    CAS  Article  Google Scholar 

  • Rahman IMM, Islam MM, Hossain MM, Hossain MS, Begum ZA, Chowdhury DA, Chakraborty MK, Rahman MA, Nazimuddin M, Hasegawa H (2011) Stagnant surface water bodies (SSWBs) as an alternative water resource for the Chittagong metropolitan area of Bangladesh: physicochemical characterization in terms of water quality indices. Environ Monit Assess 173(1–4):669–684. doi:10.1007/s10661-010-1414-7

    PubMed  CAS  Article  Google Scholar 

  • Ramesh S, Sukumaran N, Murugesan AG, Rajan MP (2010) An innovative approach of drinking Water Quality Index—a case study from Southern Tamil Nadu. India Ecol Indic 10(4):857–868

    CAS  Article  Google Scholar 

  • Reza MIH, Abdullah SA, Nor SB, Ismail MH (2013) Integrating GIS and expert judgment in a multi-criteria analysis to map and develop a habitat suitability index: a case study of large mammals on the Malayan Peninsula. Ecol Indic 34:149–158

    Article  Google Scholar 

  • Rodgher S, Azevedo H, Ferrari C, Roque C, Ronqui L, Campos M, Nascimento M (2013) Evaluation of surface water quality in aquatic bodies under the influence of uranium mining (MG, Brazil). Environ Monit Assess 185(3):2395–2406. doi:10.1007/s10661-012-2719-5

    PubMed  CAS  Article  Google Scholar 

  • Rudolph A, Ahumada R, Perez C (2002) Dissolved oxygen content as an index of water quality in San Vicente Bay, Chile (36°45′S). Environ Monit Assess 78(1):89–100

    PubMed  CAS  Article  Google Scholar 

  • Saaty TL (2001) The seven pillars of the analytic hierarchy process. Lect Notes Econ Math 507:15–37

    Article  Google Scholar 

  • Saaty TL, Vargas LG (1984) Inconsistency and rank preservation. J Math Psychol 28(2):205–214. doi:10.1016/0022-2496(84)90027-0

    Article  Google Scholar 

  • Saaty TL, Peniwati K, Shang JS (2007) The analytic hierarchy process and human resource allocation: half the story. Math Comput Model 46(7–8):1041–1053. doi:10.1016/j.mcm.2007.03.010

    Article  Google Scholar 

  • Sanchez E, Colmenarejo MF, Vicente J, Rubio A, Garcia MG, Travieso L, Borja R (2007) Use of the Water Quality Index and dissolved oxygen deficit as simple indicators of watersheds pollution. Ecol Indic 7(2):315–328. doi:10.1016/j.ecolind.2006.02.005

    Article  Google Scholar 

  • Santos S, Vilar VP, Alves P, Boaventura RR, Botelho C (2013) Water quality in Minho/Miño River (Portugal/Spain). Environ Monit Assess 185(4):3269–3281. doi:10.1007/s10661-012-2789-4

    PubMed  CAS  Article  Google Scholar 

  • Sarkar C, Abbasi SA (2006) QUALIDEX—a new software for generating water quality indice. Environ Monit Assess 119(1–3):201–231. doi:10.1007/s10661-005-9023-6

    PubMed  CAS  Article  Google Scholar 

  • Scott DM, Lucas MC, Wilson RW (2005) The effect of high pH on ion balance, nitrogen excretion and behaviour in freshwater fish from an eutrophic lake: a laboratory and field study. Aquat Toxicol 73(1):31–43. doi:10.1016/j.aquatox.2004.12.013

    PubMed  CAS  Article  Google Scholar 

  • Seeboonruang U (2012) A statistical assessment of the impact of land uses on surface Water Quality Indexes. J Environ Manag 101:134–142. doi:10.1016/j.jenvman.2011.10.019

    CAS  Article  Google Scholar 

  • Shrestha S, Kazama F, Newham LTH (2008) A framework for estimating pollutant export coefficients from long-term in-stream water quality monitoring data. Environ Model Softw 23(2):182–194

    Article  Google Scholar 

  • Silva Alves R, Oliveira Cardoso O, Abreu Tonani K, Julião F, Trevilato TB, Segura-Muñoz S (2013) Water quality of the Ribeirão Preto Stream, a watercourse under anthropogenic influence in the southeast of Brazil. Environ Monit Assess 185(2):1151–1161. doi:10.1007/s10661-012-2622-0

    PubMed  Article  Google Scholar 

  • Silva GSd, Jardim WdF (2006) Um novo índice de qualidade das águas para proteção da vida aquática aplicado ao Rio Atibaia, região de Campinas/Paulínia-SP. Quim Nova 29:689–694

    Article  Google Scholar 

  • Sipahi S, Timor M (2010) The analytic hierarchy process and analytic network process: an overview of applications. Manag Decis 48(5–6):775–808. doi:10.1108/00251741011043920

    Article  Google Scholar 

  • Smith DG, Daviescolley RJ (1992) Perception of water clarity and color in terms of suitability for recreational use. J Environ Manag 36(3):225–235

    Article  Google Scholar 

  • Smith DG, Cragg AM, Croker GF (1991) Water clarity criteria for bathing waters based on user perception. J Environ Manag 33(3):285–299. doi:10.1016/S0301-4797(91)80030-9

    Article  Google Scholar 

  • Soldán P, Badurová J (2013) A method for screening for the risk of chronic effects of surface water pollution. Environ Monit Assess 185(1):21–30. doi:10.1007/s10661-012-2529-9

    PubMed  Article  Google Scholar 

  • Suen JP, Herricks EE (2009) Developing fish community based ecohydrological indicators for water resources management in Taiwan. Hydrobiologia 625:223–234. doi:10.1007/s10750-009-9710-3

    Article  Google Scholar 

  • Sumantadinata K (1995) Present state of common carp (Cyprinus carpio L.) stocks in Indonesia. Aquaculture 129(1–4):205–209. doi:10.1016/0044-8486(94)00250-R

    Article  Google Scholar 

  • Vaidya OS, Kumar S (2006) Analytic hierarchy process: an overview of applications. Eur J Oper Res 169(1):1–29. doi:10.1016/j.ejor.2004.04.028

    Article  Google Scholar 

  • Vargas LG (1990) An overview of the analytic hierarchy process and Its applications. Eur J Oper Res 48(1):2–8. doi:10.1016/0377-2217(90)90056-H

    Article  Google Scholar 

  • Wanda EMM, Gulula LC, Phiri G (2012) Determination of characteristics and drinking Water Quality Index in Mzuzu City, Northern Malawi. Phys Chem Earth 50–52:92–97

    Article  Google Scholar 

  • Wang F, Kang SZ, Du TS, Li FS, Qiu RJ (2011) Determination of comprehensive quality index for tomato and its response to different irrigation treatments. Agric Water Manag 98(8):1228–1238. doi:10.1016/j.agwat.2011.03.004

    Article  Google Scholar 

  • Williams RJ, White C, Harrow ML, Neal C (2000) Temporal and small-scale spatial variations of dissolved oxygen in the Rivers Thames, Pang and Kennet, UK. Sci Total Environ 251:497–510

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the research supported in part by Maranatha Christian University, Indonesia, in part by Ministry of Science and Technology, Taiwan, under grant number 102-2221-E-006-246-MY3, and in part by the Headquarters of University Advancement at the National Cheng Kung University, which is sponsored by the Ministry of Education, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ping Suen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tallar, R.Y., Suen, JP. Aquaculture Water Quality Index: a low-cost index to accelerate aquaculture development in Indonesia. Aquacult Int 24, 295–312 (2016). https://doi.org/10.1007/s10499-015-9926-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-015-9926-3

Keywords

  • AHP method
  • AWQI
  • Aquaculture
  • Depok Area (Indonesia)
  • Expert panel
  • Government regulation