Aquaculture International

, Volume 24, Issue 3, pp 787–802 | Cite as

Aquaculture produces wholesome food: cultured fish as a valuable source of n-3 fatty acids

  • Werner Steffens


Long-chain unsaturated n-3 fatty acids are of remarkable significance in human nutrition. They have antiatherosclerotic efficacy and other beneficial health effects too. Aquaculture fish, e.g. cyprinids, such as silver carp (Hypophthalmichthys molitrix), bighead carp (Aristichthys nobilis), common carp (Cyprinus carpio), tench (Tinca tinca), and salmonids like Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) as well as European catfish (Silurus glanis), Baltic whitefish (Coregonus maraena), European seabass (Dicentrarchus labrax), gilthead seabream (Sparus aurata), and Nile tilapia (Oreochromis niloticus), are rich in these fatty acids. When fed on suitable diets, the fatty acid composition of cultured fish can be influenced advantageously. Several clinical tests proved the effectiveness of the consumption of farmed fish in promoting human health. Thus, aquaculture fish can be recommended as wholesome food.


Cichlids Coregonids Cyprinids Farmed fish Fatty acid composition Human health Moronids Muscle Nutrition Salmonids Silurids Sparids 


  1. Adámková V, Kacer P, Mráz J et al (2011) The consumption of the carp meat and plasma lipids in secondary prevention in the heart ischemic disease patients. Neuroendocrinol Lett 32(Suppl 2):101–104Google Scholar
  2. Bates D, Cartlidge N, French JM et al (1989) A double-blind controlled trial of long chain n-3 polyunsaturated fatty acids in the treatment of multiple sclerosis. J Neurol Neurosurg Psychiatr 52:18–22CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bell JG, Koppe W (2011) Lipids in aquafeeds. In: Turchini GM, Ng W-K, Tocher DR (eds) Fish oil replacement and alternative lipid sources in aquaculture feeds. CRC Press, Boca Raton, pp 21–59Google Scholar
  4. Bell JG, Tocher DR (2012) Novel ingredients for aquafeeds to improve sustainability and security of supply. FishfarmingXpert No.4, August 2012, pp 43–46Google Scholar
  5. Bell JG, Mc Ghee F, Campbell PJ, Sargent JR (2003a) Rapeseed oil as an alternative to marine fish oil in diets of postsmolt Atlantic salmon (Salmo salar): changes in flesh fatty acid composition and effectiveness of subsequent fish oil ‘wash out’. Aquaculture 218:515–528CrossRefGoogle Scholar
  6. Bell JG, Tocher D, Henderson RJ et al (2003b) Altered fatty acid compositions in Atlantic salmon (Salmo salar) fed diets containing linseed and rapeseed oils can be partially restored by a subsequent fish oil finishing diet. J Nutr 133:2793–2801PubMedGoogle Scholar
  7. Bell JG, Henderson RJ, Tocher DR, Sargent JR (2004) Replacement of dietary fish oil with increasing levels od linseed oil: modification of flesh fatty acid compositions in Atlantic salmon (Salmo salar) using a fish oil finishing diet. Lipids 39:223–232CrossRefPubMedGoogle Scholar
  8. Blanchet C, Lucas M, Julien P et al (2005) Fatty acid composition of wild and farmed Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Lipids 40:529–531CrossRefPubMedGoogle Scholar
  9. Bouwstra H, Dijck-Brouwer J, Desci T et al (2006) Neurologic condition of healthy term infants at 18 months: positive association with venous umbilical DHA status and negative association with umbilical trans-fatty acids. Pediatr Res 60:334–339CrossRefPubMedGoogle Scholar
  10. Chong EW-T, Kreis AJ, Wong TY et al (2008) Dietary ω-3 fatty acid and fish intake in the primary prevention of age-related macular degeneration. A systematic review and meta-analysis. Arch Ophthalmol 126:826–833CrossRefPubMedGoogle Scholar
  11. Corraze G, Larroquet L, Richard N, Kaushik S (2006) Use of fish oil finishing diet to tailor fatty acid composition of the flesh of rainbow trout previously fed with vegetable oil over a full cycle. In: Proceedings of the 12th international symposium on fish nutrition and feeding, Biarritz, 28 May–1 June 2006, p 307Google Scholar
  12. Cowey CB (1993) Some effects of nutrition on flesh quality of cultured fish. In: Kaushik S, Luquet P (eds) Fish nutrition in practice. IVth international symposium on fish nutrition and feeding, Biarritz, 24–27 June 1991, pp 227–236Google Scholar
  13. Csengeri I, Müller F, Oláh J et al (1988) Fish consumption and cardiovascular diseases. In: Paper presented at the XIIth Hungarian conference on fisheries sciences, Szarvas, 9–10 July 1988Google Scholar
  14. Csengeri I, Farkas T, Joó I et al (1989) Eicosapentaenoic acid in freshwater fishes and its role in human nutrition. In: Abstracts of the 40th annual meeting of the EAAP, Dublin, 27–31 August 1989, vol 1, pp 287–288Google Scholar
  15. DGE/ÖGE/SGE (eds) (2008) DACH-Referenzwerte für die Nährstoffzufuhr, 3rd edn. Braus, FrankfurtGoogle Scholar
  16. EFSA (2010) Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J 8(3):1461Google Scholar
  17. FAO (2012) The state of world fisheries and aquaculture 2012. FAO, RomeGoogle Scholar
  18. FAO (2014) The state of world fisheries and aquaculture. Opportunities and challenges. FAO, RomeGoogle Scholar
  19. Füllner G, Wirth M (1996) Der Einfluß der Ernährung auf Fettgehalt und Fettsäurezusammensetzung Europäischer Welse (Silurus glanis). Fett/Lipid 98:300–304CrossRefGoogle Scholar
  20. Gu Y, Nieves JW, Stern Y et al (2010) Food combination and Alzheimer disease risk: a protective diet. Arch Neurol 67:699–706CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hardy RW (2003) Farmed fish and omega-3 fatty acids. Aquac Mag March/April:1–3 Google Scholar
  22. Harris WS, Von Schacky C (2004) The omega-3 index: a new risk factor for sudden cardiac death? Prev Med 39:212–220CrossRefPubMedGoogle Scholar
  23. Herold PM, Kinsella JE (1986) Fish oil consumption and decreased risk of cardiovascular disease: a comparison of findings from animal and human feeding trials. Am J Clin Nutr 43:566–598PubMedGoogle Scholar
  24. Higgs GA (1986) The role of eicosanoids in inflammation. Progr Lipid Res 25:555–561CrossRefGoogle Scholar
  25. Hirai A, Terano T, Saito H et al (1987) Clinical and epidemiological studies of eicosapentaenoic acid in Japan. In: Lands WEM (ed) Proceedings of AOAC short course on polyunsaturated fatty acids and eicosanoids. Champaign, Illinois, pp 9–24 Google Scholar
  26. Hixon SM, Parrish ChC, Anderson DM (2014) Use of camelina oil to replace fish oil in diets for farmed salmonids and Atlantic cod. Aquaculture 431:44–52CrossRefGoogle Scholar
  27. Hodge WG, Schachter HM, Barnes D et al (2006) Efficacy of omega-3 fatty acids in preventing age-related macular degeneration: a systematic review. Ophthalmology 113:1165–1172CrossRefPubMedGoogle Scholar
  28. Horrobin DF, Manku MS (1990) Clinical biochemistry of essential fatty acids. In: Horrobin DF (ed) Omega-6 essential fatty acids. Pathophysiology and roles in clinical medicine. Wiley-Liss, New York, pp 21–53Google Scholar
  29. Izquierdo MS, Obach A, Arantzamendi L, Montero D, Robaina L, Rosenlund G (2003) Dietary lipid sources for seabream and seabass: growth performance, tissue composition and flesh quality. Aquac Nutr 9:397–407CrossRefGoogle Scholar
  30. Jobling M (2003) Do changes in Atlantic salmon, Salmo salar L., fillet fatty acids following a dietary switch represent wash-out or dilution? Test of a dilution model and its application. Aquac Res 34:1215–1221CrossRefGoogle Scholar
  31. Jobling M (2004) Are modifications in tissue fatty acid profiles following a change in diet the result of dilution? Test of a simple dilution model. Aquaculture 232:551–562CrossRefGoogle Scholar
  32. Jobling M, Leknes O, Sæther BS, Bendiksen EÅ (2008) Lipid and fatty acid dynamics in Atlantic cod, Gadus morhua, tissues: influence of dietary lipid concentrations and feed oil sources. Aquaculture 281:87–94CrossRefGoogle Scholar
  33. Joó I, Farkas T, Csengeri I et al (1988) A new source of eicosapentaenoic acid and its hypolipidaemic effect. In: Abstracts of the 29th international conference on the biochemistry of lipids, Tokyo, 19–22 September 1988, p 61Google Scholar
  34. Joó I, Kürti K, Tóth S et al (1989) The hypolipidaemic effect of bighead carp diet for long period. In: Abstracts of the 19th meeting of FEBS, TH 275, Rome, 2–7 July 1989Google Scholar
  35. Karmeli RA (1987) Omega-3 fatty acids and cancer: a review. In: Lands WEM (ed) Proceedings of AOAC short course on polyunsaturated fatty acids and eicosanoids. Champaign, Illinois, pp 222–231Google Scholar
  36. Kelley VE, Ferritti A, Izni S, Strom TB (1985) A fish oil diet rich in eicosapentaenoic acid reduces cyclooxygenase metabolites and suppresses lupus in MLR-lpr mice. J Immunol 134:1914–1919PubMedGoogle Scholar
  37. Kremer JM, Lawrence D, Jubiz W (1988) Different doses of fish oil fatty acid supplementation on rheumatoid arthritis. A prospective double-blinded randomized study. Arthritis Rheum 31:530–536Google Scholar
  38. Lands WEM (1986) Fish and human health. Academic Press, OrlandoGoogle Scholar
  39. Lee JH, O´Keefe JH, Lavie CJ et al (2008) Omega-3 fatty acids for cardioprotection. Mayo Clin Proc 83:324–332CrossRefPubMedGoogle Scholar
  40. Marchioli R, Barzi F, Bomba E et al (2002) Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell´Infarto Miocardico (GISSI)-Prevenzione. Circulation 105:1897–1903CrossRefPubMedGoogle Scholar
  41. Mieth G, Wirth M, Friedrich M, Steffens W, Lieder U (1989a) Zur Lipidzusammensetzung von Cyprinidenarten. 1. Mitt. Lipidgehalt und Fettsäurespektrum von Silberkarpfen (Hypophthalmichthys molitrix Val.). Nahrung 33:91–93CrossRefPubMedGoogle Scholar
  42. Mieth G, Wirth M, Weigelt E, Steffens W, Lieder U, Friedrich M (1989b) Zur Lipidzusammensetzung von Cyprinidenarten. 2. Mitt. Lipidgehalt und Fettsäurespektrum von Marmorkarpfen (Aristichthys nobilis). Nahrung 33:909–912Google Scholar
  43. Miles EA, Noakes PS, Kremmyda LS et al (2011) The salmon pregnancy study: study design, subject characteristics, maternal fish and marine n-3 fatty acid intake, and marine n-3 fatty acid status in maternal and umbilical cord blood. Am J Clin Nutr 94(6 Suppl):1986–1992CrossRefGoogle Scholar
  44. Molnár T, Biró J, Hancz C, Romvári R, Varga D, Horn P, Szabó A (2012) Fatty acid profile of fillet, liver and mesenteric fat in tilapia (Oreochromis niloticus) fed vegetable oil supplementation in the finishing period of fattening. Archiv Tierzucht 55:194–205Google Scholar
  45. Mourente G, Good JE, Bell JG (2005) Partial substitution of fish oil with rapeseed, linseed and olive oils in diets for European sea bass (Dicentrarchus labrax L.): effects on flesh fatty acid composition, plasma prostaglandins E2 and F, immune function and effectiveness of a fish oil finishing diet. Aquac Nutr 11:25–40CrossRefGoogle Scholar
  46. Mráz J, Pickova J (2011) Factors influencing fatty acid composition of common carp (Cyprinus carpio) muscle. Neuroendocrinol Lett 32(Suppl 2):3–8PubMedGoogle Scholar
  47. Mráz J, Máchová J, Kozák P, Pickova J (2012a) Lipid content and composition in common carp—optimization of n-3 fatty acids in different pond production systems. J Appl Ichthyol 28:238–244CrossRefGoogle Scholar
  48. Mráz J, Zajíc T, Pickova J (2012b) Culture of common carp (Cyprinus carpio) with defined flesh quality for prevention of cardiovascular diseases using finishing feeding strategy. Neuroendocrinol Lett 33(Suppl 2):60–67PubMedGoogle Scholar
  49. Noakes PS, Vlachava M, Kremmyda LS et al (2012) Increased intake of oily fish in pregnancy: effects on neonatal immune responses and on clinical outcomes in infants at 6 months. Am J Clin Nutr 95:395–404CrossRefPubMedGoogle Scholar
  50. Palmer DJ, Sullivan T, Gold MS et al (2012) Effect of n-3 long chain polyunsaturated fatty acid supplementation in pregnancy on infants´ allergies in first year of life: randomised controlled trial. Brit Med J 344:e184CrossRefPubMedPubMedCentralGoogle Scholar
  51. Rhodes EL (1984) MAXEPA in the treatment of eczema. Brit J Clin Pract 38(Suppl 31):115–116Google Scholar
  52. Robin JH, Regost C, Arzel L, Kaushik S (2003) Fatty acid profile of fish following a change in dietary fatty acid source: model of fatty acid composition with a dilution hypothesis. Aquaculture 225:283–293CrossRefGoogle Scholar
  53. Rosenlund G, Corraze G, Izquierdo M, Torstensen BE (2011) The effects of fish oil replacement on nutritional and organoleptic qualities of farmed fish. In: Turchini GM, Ng W-K, Tocher DR (eds) Fish oil replacement and alternative lipid sources in aquaculture feeds. CRC Press, Boca Raton, pp 487–522Google Scholar
  54. Schmidt G, Arndt G-M, Manthey-Karl M, Karl H (2014) Aufzucht und Produktqualität von Ostseeschnäpeln (Coregonus maraena) in verschiedenen Aquakultursystemen. Fischerei & Fischmarkt in Mecklenburg-Vorpommern 14(2):32–40Google Scholar
  55. Sekikawa A, Curb JD, Ueshima H et al (2008) Marine-derived n-3 fatty acids and atherosclerosis in Japanese, Japanese Americans and Whites: a cross-sectional study. J Am Coll Cardiol 52:417–424CrossRefPubMedPubMedCentralGoogle Scholar
  56. Singer P (1997) Fisch gegen Herzinfarkt: Ein Ratgeber zur Vorbeugung und Behandlung von Herz-Kreislauf-Krankheiten durch essentielle Omega-3-Fettsäuren. Umschau, FrankfurtGoogle Scholar
  57. Singer P (2000) Was sind, wie wirken Omega-3-Fettsäuren? 44 Fragen—44 Antworten, 3rd edn. Umschau, FrankfurtGoogle Scholar
  58. Singer P (2010) Praktische Aspekte bei der Zufuhr von Omega-3-Fettsäuren. Ernährung und Medizin 25(Suppl 1):3–18CrossRefGoogle Scholar
  59. Singer P, Ständer M (1990) Fischöl zur adjunktiven Therapie bei Psoriasis. Der Deutsche Dermatologe 38:1200–1211Google Scholar
  60. Singer P, Wirth M (2002) Günstiger Einfluss von ω-3-Fettsäuren auf Herzrhythmusstörungen. Ernährungsumschau 49:178–181Google Scholar
  61. Steffens W (1989) Principles of fish nutrition. Ellis Horwood, ChichesterGoogle Scholar
  62. Steffens W (1997) Effects of variation in essential fatty acids in fish feeds on nutritive value of freshwater fish for humans. Aquaculture 151:97–119CrossRefGoogle Scholar
  63. Steffens W (2010) Nochmals: Fischverzehr fördert die Gesundheit. Fischer und Teichwirt 61:292–295Google Scholar
  64. Steffens W (2014) Mangel an Fischöl wird die künftige Entwicklung der Aquakultur nicht beeinträchtigen. Fischer und Teichwirt 65:23–25Google Scholar
  65. Steffens W (2015) Gegenwärtiger Stand von Weltfischereei und Aquakultur. Fischer und Teichwirt 66:23–25Google Scholar
  66. Steffens W, Wirth M (1995) Süßwasserfische als Quelle essentieller Fettsäuren für die menschliche Ernährung. Arbeiten des Deutschen Fischerei-Verbandes 62:88–111Google Scholar
  67. Steffens W, Wirth M (1997) Cyprinids as a valuable source of essential fatty acids for human health: a review. Asian Fish Sci 10:83–90Google Scholar
  68. Steffens W, Wirth M (2005) Freshwater fish—an important source of n-3 polyunsaturated fatty acids: a review. Arch Pol Fish 13:5–16Google Scholar
  69. Steffens W, Wirth M (2007) Influence of nutrition on the lipid quality of pond fish: common carp (Cyprinus carpio) and tench (Tinca tinca). Aquac Int 15:313–319CrossRefGoogle Scholar
  70. Steffens W, Lieder U, Mieth G, Wirth M, Friedrich M (1989) Zur Wirkungsweise hochungesättigter Fettsäuren der n-3-Reihe im Lipidstoffwechsel und der Bedeutung phytoplanktonfressender Cypriniden aus Binnengewässern als Eicosapentaensäure-reiche Nahrungsmittel. Fortschritte der Fischereiwissenschaft 8:9–18Google Scholar
  71. Steffens W, Lieder U, Wirth M, Mieth G (1991) The importance of silver carp and bighead carp as dietetic foodstuffs for prophylaxis and therapy of cardiovascular diseases. Fischerei-Forschung 29:113–114Google Scholar
  72. Steffens W, Wirth M, Mieth G, Lieder U (1993) Freshwater fish as a source of ω-3 polyunsaturated fatty acids and their application to human nutrition. In: Kaushik SJ, Luquet P (eds) Fish nutrition in practice. IVth international symposium on fish nutrition and feeding, Biarritz, 24–27 June 1991, pp 469–474Google Scholar
  73. Steffens W, Wirth M, Füllner G (1998) Fatty acid composition of tench (Tinca tinca L.) under different nutritional conditions. Pol Arch Hydrobiol 45:353–359Google Scholar
  74. Steffens W, Rennert B, Wirth M, Krüger R (1999) Effect of two lipid levels on growth, feed utilization, body composition and some biochemical parameters of rainbow trout, Oncorhynchus mykiss (Walbaum 1792). J Appl Ichthyol 15:159–164Google Scholar
  75. Sýkora M, Valenta M (1978) Lipidy rybničních ryb celedi Cyprinidae. Živočišná Výroba 23:811–824Google Scholar
  76. Thais F, Stahl RA (1987) Effect of dietary fish oil on renal function in immune mediated glomerular injury. In: Lands, WEM (ed) Proceedings of AOAC short course on polyunsaturated fatty acids and eicosanoids, Champaign, Illinois, pp 123-126Google Scholar
  77. Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11:107–184CrossRefGoogle Scholar
  78. Tonial IB, Stevanato FB, Matsushita M, De Souza NE, Furuya WM, Visentainer JV (2009) Optimization of flaxseed oil feeding time length in adult Nile tilapia (Oreochromis niloticus) as a function of muscle omega-3 fatty acids composition. Aquac Nutr 15:564–568CrossRefGoogle Scholar
  79. Torstensen BE, Frøyland L, Lie Ø (2004a) Replacing dietary fish oil with increasing levels of rapeseed oil and olive oil—effects on Atlantic salmon (Salmo salar L.) tissue and lipoprotein lipid composition and lipogenic enzyme activities. Aquac Nutr 10:175–192CrossRefGoogle Scholar
  80. Torstensen BE, Frøyland L, Ørnsrud R, Lie Ø (2004b) Tailoring of a cardioprotective muscle fatty acid composition of Atlantic salmon (Salmo salar) fed vegetable oils. Food Chem 87:567–580CrossRefGoogle Scholar
  81. Turchini GM, Ng W-K, Tocher DR (eds) (2011) Fish oil replacement and alternative lipid sources in aquaculture feeds. CRC Press, Boca RatonGoogle Scholar
  82. Waagbø R, Sandnes K, Torrissen OJ, Sandvin A, Lie Ø (1993) Chemical and sensory evaluation of fillets from Atlantic salmon (Salmo salar) fed three levels of n-3 polyunsaturated fatty acids at two levels of vitamin E. Food Chem 46:361–366CrossRefGoogle Scholar
  83. Wirth M, Steffens W (1996) Zum Fettstoffwechsel von Speisekarpfen bei der Aufzucht auf Naturnahrungsbasis und mit Getreidezufütterung. Fischer und Teichwirt 47:270–272Google Scholar
  84. Wirth M, Wagenknecht C, Kretschmer H et al (1990a) ω-3-Fettsäure-haltige Nahrungsquellen für die Prävention von Herz-Kreislauferkrankungen. J Clin Chem Clin Biochem 28:803Google Scholar
  85. Wirth M, Wagenknecht CU, Ruszcynski R et al (1990b) Erste klinische Bewertung der n-3-fettsäurereichen Süßwasserfische Marmorkarpfen und Silberkarpfen. Hochdruck 10:116–117Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.German Fisheries AssociationHamburgGermany
  2. 2.BerlinGermany

Personalised recommendations