Aquaculture International

, Volume 23, Issue 2, pp 547–561 | Cite as

Effects of diets with fermented duckweed (Lemna sp.) on growth performance and gene expression in the Pacific white shrimp, Litopenaeus vannamei

  • Ma. del Carmen Flores-Miranda
  • Antonio Luna-GonzálezEmail author
  • Diana Verónica Cortés-Espinosa
  • Píndaro Álvarez-Ruiz
  • Edilmar Cortés-Jacinto
  • Francisco Javier Valdez-González
  • Ruth Escamilla-Montes
  • Héctor Abelardo González-Ocampo


This study evaluated the effects of diets with fermented duckweed flour (Lemna sp.) (FDF) on growth performance and gene expression in Pacific white shrimp, Litopenaeus vannamei. Shrimp were cultured in an outdoor system during 50 days and fed diets containing 0, 5, 15, 25, and 35 % FDF replacing fishmeal (FM) (diets D0, D5, D15, D25, and D35, respectively). At the end of the bioassay, shrimp survival was 100 % in all treatments and growth performance was significantly better than D0 (100 % FM), especially in diet D35 with 35 % FDF. The mRNA expression of trypsin, chymotrypsin, cathepsin B, heat shock protein 70 (Lvhsp70), and heat shock protein 90 (Lvhsp90) was significantly increased at the highest FDF concentrations in diets (D15, D25, and D35) as compared to D0. Dietary FDF affected the immune system of shrimp only in diets D5 (superoxide dismutase and lysozyme) and D15 (lysozyme) where mRNA expression was significantly higher than D0. FM can be replaced with up to 35 % FDF without adversely affecting the survival and growth performance of cultured shrimp. The inclusion of FDF in diets affected the expression of stress and digestive genes, but, in immune-related genes, the effect did not show a clear trend.


Fermented duckweed flour Fish meal Gene expression Growth performance Litopenaeus vannamei 



Authors are grateful to the Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional (SIP-IPN) for financial support. Ma. del Carmen Flores-Miranda (CVU 269832) acknowledges the Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico) and SIP-IPN for scholarships.


  1. Aas TS, Grisdale-Helland B, Terjesen BF, Helland SJ (2006a) Improved growth and nutrient utilisation in Atlantic salmon (Salmo salar) fed diets containing a bacterial protein meal. Aquaculture 259:365–376CrossRefGoogle Scholar
  2. Aas TS, Hatlen B, Grisdale-Helland B, Terjesen BF, Bakke-McKellep AM, Helland SJ (2006b) Effects of diets containing a bacterial protein meal on growth and feed utilisation in rainbow trout (Oncorhynchus mykiss). Aquaculture 261:357–368CrossRefGoogle Scholar
  3. Amaya EA, Davis DA, Rouse DB (2007) Replacement of fishmeal in practical diets for the Pacific white shrimp (Litopenaeus vannamei) reared under pond conditions. Aquaculture 262:291–298Google Scholar
  4. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250CrossRefPubMedGoogle Scholar
  5. Anderson KE, Lowman Z, Stomp AM, Chang J (2011) Duckweed as feed ingredient in laying hen diets and its effect on egg production and composition. Int J Poult Sci 10(1):4–7CrossRefGoogle Scholar
  6. Bairagi A, Sarkar Ghosh K, Sen SK, Ray AK (2002) Duckweed (Lemna polyrhiza) leaf meal as a source of feedstuff in formulated diets for rohu (Labeo rohita Ham.) fingerlings after fermentation with a fish intestinal bacterium. Bioresour Technol 85:17–24CrossRefPubMedGoogle Scholar
  7. Bauer W, Prentice-Hernandez C, Tesser MB, Wasielesky W Jr, Poersch LHS (2012) Substitution of fishmeal with microbial floc meal and soy protein concentrate in diets for the pacific white shrimp Litopenaeus vannamei. Aquaculture 342–343:112–116CrossRefGoogle Scholar
  8. Brock J, Main KL (1994) A guide to the common problems and diseases of cultured Penaeus vannamei. World Aquaculture Society, Baton RougeGoogle Scholar
  9. Brown WY, Choct M, Pluske JR (2013) Duckweed (Landoltia punctata) in dog diets decreases digestibility but improves stool consistency. Anim Prod Sci 53(11):1188–1194CrossRefGoogle Scholar
  10. Chang CF, Chen HY, Su MS, Liao IC (2000) Immunomodulation by dietary β-1,3 glucan in the brooders of the black tiger shrimp, Penaeus monodon. Fish Shellfish Immunol 10:505–514CrossRefPubMedGoogle Scholar
  11. Chaturvedi KMM, Langote DS, Asolekar RS (2003) Duckweed-fed fisheries for treatment of low strength community waste water. WWWTM Newsletter-Asian Institute of Technology, IndiaGoogle Scholar
  12. Chávez-Calvillo G, Perez-Rueda E, Lizamaa G, Zúñiga-Aguilar JJ, Gaxiola G, Cuzon G, Arena-Ortiza L (2010) Differential gene expression in Litopenaeus vannamei shrimp in response to diet changes. Aquaculture 300(1–4):137–141CrossRefGoogle Scholar
  13. Cheng W, Chiu CS, Guu YK, Tsai ST, Liu CH (2013) Expression of recombinant phytase of Bacillus subtilis E20 in Escherichia coli HMS174 and improving the growth performance of white shrimp, Litopenaeus vannamei, juveniles by using phytase-pretreated soy-bean meal-containing diet. Aquac Nutr 19:117–127CrossRefGoogle Scholar
  14. Chookird D, Tantikitti C, Pongdara A, Srichanun M (2010) Effect of hemoglobin powder substituted for fishmeal on growth performance, protein digestibility, and trypsin gene expression in Litopenaeus vannamei. Songklanakarin J Sci Technol 32(2):119–127Google Scholar
  15. Daniel WW (1997) Bioestadística. Base para el análisis de las ciencias de la salud. D. F. Editorial Limusa, Mexico, pp 639–693Google Scholar
  16. Edwards P, Kamal M, Wee KL (1985) Incorporation of composted and dried water hyacinth in pelleted feed for the tilapia Oreochromis niloticus (Peters). Aquac Fish Manag 1:233–248Google Scholar
  17. FAO (2012) Food and agriculture organization of the United Nations. The State of World Fisheries and Aquaculture 2011 Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  18. Flores-Miranda MC, Luna-González A, Campa-Córdova AI, González-Ocampo HA, Fierro-Coronado JA, Partida-Arangure BO (2011) Microbial immunostimulants reduce mortality in whiteleg shrimp (Litopenaeus vannamei) challenged with Vibrio sinaloensis strains. Aquaculture 320:51–55CrossRefGoogle Scholar
  19. Flores-Miranda MC, Luna-González A, Cortés-Espinosa DV, Cortés-Jacinto E, Fierro-Coronado JA, Álvarez-Ruiz P, González-Ocampo HA, Escamilla-Montes R (2014) Bacterial fermentation of Lemna sp. as a potential substitute of fish meal in shrimp diets. Afr J Microbiol Res 8(14):1516–1526CrossRefGoogle Scholar
  20. Gamboa-Delgado J, Rojas-Casas MG, Nieto-López MG, Cruz-Suárez LE (2013) Simultaneous estimation of the nutritional contribution of fishmeal, soy protein isolate and corn gluten to the growth of Pacific white shrimp (Litopenaeus vannamei) using dual stable isotope analysis. Aquaculture 380–383:33–40CrossRefGoogle Scholar
  21. He S, Liang XF, Li L, Sun J, Shen D (2013) Differential gut growth, gene expression and digestive enzyme activities in young grass carp (Ctenopharyngodon idella) fed with plant and animal diets. Aquaculture 410–411:18–24CrossRefGoogle Scholar
  22. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19CrossRefPubMedCentralPubMedGoogle Scholar
  23. Hu KJ, Leung PC (2007) Food digestion by cathepsin L and digestion-related rapid cell differentiation in shrimp hepatopancreas. Comp Biochem Physiol B 146:69–80CrossRefPubMedGoogle Scholar
  24. Huang J, Yang Y, Wang A (2010) Reconsideration of phenoloxidase activity determination in white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 28:240–244CrossRefPubMedGoogle Scholar
  25. Iwanaga S, Lee BL (2005) Recent advances in the innate immunity of invertebrate animals. Biochem Mol Biol 38:128–150CrossRefGoogle Scholar
  26. Kiron V, Phromkunthong W, Huntley M, Archibald JA, Scheemaker G (2012) Marine microalgae from refinery as a potential feed protein source for Atlantic salmon, common carp and whiteleg shrimp. Aquac Nutr 18:521–531CrossRefGoogle Scholar
  27. Klomklao S (2008) Digestive proteinases from marine organisms and their applications. Songklanakarin J Sci Technol 30(1):37–46Google Scholar
  28. Kumaraguru Vasagam KP, Balasubramanian T, Venkatesan R (2007) Apparent digestibility of differently processed grain legumes, cow pea and mung bean in black tiger shrimp, Penaeus monodon Fabricius and associated histological anomalies in hepatopancreas and midgut. Anim Feed Sci Technol 132:250–266CrossRefGoogle Scholar
  29. Landolt E (1986) Biosystematic investigation on the family of duckweeds: the family of Lemnaceaea monograph study. Geobotanischen Institute ETH, StiftungRubel, Zurichbergstrasse, p 38Google Scholar
  30. Le Moullac G, De Laborie LP, Saulnier D, Goarant C, Dehasque M (1998) Principles and problems involved in the evaluation of immunostimulants on juvenile shrimp. In: Cerecedo RC, Claudia BM, Pérez-Estrada J, Suarez LE, Ricque MD (eds) Avances de Nutrición Acuícola. Memorias del IV Simposium International de Nutrición Acuícola, La Paz, B.S.C, Mexico, pp 1–12Google Scholar
  31. Leng RA, Stambolie JH, Bell R (1995) Duckweed a potential high-protein feed resource for domestic animals and fish. Livest Res Rural Dev 7:1–10Google Scholar
  32. Macias-Sancho J, Poersch LH, Bauer W, Romano LA, Wasielesky W, Tesser MB (2014) Fishmeal substitution with Arthrospira (Spirulina platensis) in a practical diet for Litopenaeus vannamei: effects on growth and immunological parameters. Aquaculture 426–427:120–125CrossRefGoogle Scholar
  33. McDonald C, Inohara N, Nuñez G (2005) Peptidoglycan signaling in innate immunity and inflammatory disease. J Biol Chem 280(21):20177–20180CrossRefPubMedGoogle Scholar
  34. Muhlia-Almazán A, García-Carreño FL (2002) Influence of molting and starvation on the synthesis of proteolytic enzymes in the midgut gland of the white shrimp Penaeus vannamei. Comp Biochem Physiol B 133:383–394CrossRefPubMedGoogle Scholar
  35. Muhlia-Almazán A, García-Carreño FL, Sánchez-Paz JA, Yepiz-Plascencia G, Peregrino-Uriarte AB (2003) Effects of dietary protein on the activity and mRNA level of trypsin in the midgut gland of the white shrimp Penaeus vannamei. Comp Biochem Physiol B 135:373–383CrossRefPubMedGoogle Scholar
  36. Mukho-Padhayay N, Ray AK (1999) Utilization of copra meal in the formulation of compounded diets for rohu, Labeo rohita fingerlings. J Appl Ichthyol 15:127–131CrossRefGoogle Scholar
  37. Nout MJR (2009) Rich nutrition for the poorest–cereal fermentations in Africa and Asia. Food Microbiol 26:685–692CrossRefPubMedGoogle Scholar
  38. Omondi GJ (2005) Digestive endo-proteases from the midgut glands of the Indian white shrimp, Penaeus indicus (Decapoda: Penaeidae) from Kenya. West Indian Ocean J Mar Sci 4(1):109–121Google Scholar
  39. Oujifard A, Seyfabadi J, Kenari AA, Rezaei M (2012) Fish meal replacement with rice protein concentrate in a practical diet for the Pacific white shrimp, Litopenaeus vannamei Boone, 1931. Aquac Int 20:117–129CrossRefGoogle Scholar
  40. Qian Z, Liu X, Wang L, Wang X, Li Y, Xiang J, Wang P (2012) Gene expression profiles of four heat shock proteins in response to different acute stresses in shrimp, Litopenaeus vannamei. Comp Biochem Physiol C 156:211–220Google Scholar
  41. Richard L, Surget A, Rigolet V, Kaushik SJ, Geurden I (2011) Availability of essential amino acids, nutrient utilization and growth in juvenile black tiger shrimp, Penaeus monodon, following fishmeal replacement by plant protein. Aquaculture 322–323:109–116CrossRefGoogle Scholar
  42. Saha S, Ray AK (2011) Evaluation of nutritive value of water hyacinth (Eichhornia crassipes) leaf meal in compound diets for Rohu, Labeo rohita (Hamilton, 1822) fingerlings after fermentation with two bacterial strains isolated from fish gut. Turk J Fish Aquat Sci 11:199–207CrossRefGoogle Scholar
  43. Sajeevan TP, Rosamma P, Bright Singh IS (2009) Dose/frequency: a critical factor in the administration of glucan as immunostimulant to Indian white shrimp Fenneropenaeus indicus. Aquaculture 287:248–252CrossRefGoogle Scholar
  44. Sanchez-Paz A, Garcia-Carreño FL, Muhlia-Almazan A, Hernandez-Saavedra N, Yepiz-Plascencia G (2003) Differential expression of trypsin mRNA in the white shrimp (Penaeus vannamei) midgut gland under starvation conditions. J Exp Mar Biol Ecol 292:1–17CrossRefGoogle Scholar
  45. Simpson BK (2000) Digestive proteinases from marine animals. In: Haard NF, Simpson BK (eds) Seafood enzymes: utilization and influence on postharvest seafood quality, Editors. Marcel Dekker, New York, pp 531–540Google Scholar
  46. Sookying D, Davis DA (2011) Pond production of Pacific white shrimp (Litopenaeus vannamei) fed high levels of soybean meal in various combinations. Aquaculture 319:141–149CrossRefGoogle Scholar
  47. Stephens A, Rojo L, Araujo-Bernal S, García-Carreño F, Muhlia-Almazan A (2012) Cathepsin B from the white shrimp Litopenaeus vannamei: cDNA sequence analysis, tissues-specific expression and biological activity. Comp Biochem Physiol B 161:32–40CrossRefPubMedGoogle Scholar
  48. Suárez JA, Gaxiola G, Mendoza R, Cadavid S, Garcia G, Alanis G, Suárez A, Faillace J, Cuzon G (2009) Substitution of fishmeal with plant protein sources and energy budget for white shrimp Litopenaeus vannamei (Boone, 1931). Aquaculture 289:118–123CrossRefGoogle Scholar
  49. Subramanian D, Jang YH, Kim DH, Kang BJ, Heo MS (2013) Dietary effect of Rubus coreanus ethanolic extract on immune expression in white leg shrimp, Penaeus vannamei. Fish Shellfish Immunol 35(3):808–814CrossRefPubMedGoogle Scholar
  50. Tacon AGJ, Metian M (2008) Global overview on the use of fishmeal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285:146–158CrossRefGoogle Scholar
  51. Teschke M, Saborowski R (2005) Cysteine proteinases substitute for serine proteinases in the midgut glands of Crangon crangon and Crangon allmani (Decapoda: Caridea). J Exp Mar Biol Ecol 316:213–229CrossRefGoogle Scholar
  52. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):0034CrossRefGoogle Scholar
  53. Wang YC, Chang PS, Chen HY (2008) Differential time series expression of immune-related genes of Pacific white shrimp Litopenaeus vannamei in response to dietary inclusion of β-1,3-glucan. Fish Shellfish Immunol 24:113–121CrossRefPubMedGoogle Scholar
  54. Wang KH, Tseng C, Lin H, Chen I, Chen Y, Chen Y, Chen T, Yang H (2010) RNAi knock-down of the Litopenaeus vannamei Toll gene (LvToll) significantly increases mortality and reduces bacterial clearance after challenge with Vibrio harveyi. Dev Comp Immunol 34:49–58CrossRefGoogle Scholar
  55. Yilmaz E, Akyurt I, Günal G (2004) Use of duckweed, Lemna minor, as a protein feedstuff in practical diets for common carp, Cyprinus carpio, fry. Turk J Fish Aquat Sci 4:105–109Google Scholar
  56. Ziaei-Nejad S, Rezaei MH, Takami GA, Lovett DL, Mirvaghefi AR, Shakouri M (2006) The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture 252:516–524CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ma. del Carmen Flores-Miranda
    • 1
  • Antonio Luna-González
    • 1
    Email author
  • Diana Verónica Cortés-Espinosa
    • 2
  • Píndaro Álvarez-Ruiz
    • 1
  • Edilmar Cortés-Jacinto
    • 3
  • Francisco Javier Valdez-González
    • 4
  • Ruth Escamilla-Montes
    • 1
  • Héctor Abelardo González-Ocampo
    • 1
  1. 1.Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Unidad SinaloaInstituto Politécnico NacionalGuasaveMexico
  2. 2.Centro de Investigación en Biotecnología Aplicada-Instituto Politécnico NacionalTlaxcalaMexico
  3. 3.Centro de Investigaciones Biológicas del NoroesteLa PazMexico
  4. 4.Universidad Autónoma de SinaloaCuliacánMexico

Personalised recommendations