Aquaculture International

, Volume 23, Issue 1, pp 111–125 | Cite as

Echinoculture: the rearing of Paracentrotus lividus in a recirculating aquaculture system—experiments of artificial diets for the maintenance of sexual maturation

  • D. SartoriEmail author
  • A. Scuderi
  • G. Sansone
  • A. Gaion


Over the past 5 years, with the growth of fish production and the improvement of distribution channels, the global fish food demand has also grown; in such a context, natural stocks of Echinoderms have suffered a marked reduction in production. This scenario was exacerbated for Pararacentrotus lividus by the fact that this species was recognized worldwide among the most reliable as a bioindicator, and its gametes have been used for biological assays for monitoring marine pollution. In this study, we focused on the maintenance of mature stage in adults of P. lividus using artificial diets. Two diets were tested: the first consisted of a mixture of maize and fresh seaweed, whereas the second diet was composed of maize and spinach leaves. The diets employed in this study, in combination with a 10H L: 14H D light regime and a water temperature of 14 °C, ensured the maintenance of animals into a mature stage for a 4-month period. This breeding period permitted them to overcome the summer months during which it is not possible to obtain gametes from organisms belonging to wild population at our latitude. Meanwhile, diets guaranteed a considerable gonadal growth when compared with the natural population.


Diets Echinoculture Recirculating aquaculture system Sexual maturation 


  1. Andrew NL, Agatsuma Y, Ballesteros E, Bazhin AG, Creaser EP, Barnes DKA, Botsford LW, Bradbury A, Campbell A, Dixon JD, Einarsson S, Gerring PK, Hebert K, Hunter M, Hur SB, Johnson CR, Juinio-Menez MA, Kalvass P, Miller RJ, Moreno CA, Palleiro JS, Rivas D, Robinson SML, Schroeter SC, Steneck RS, Vadas RL, Woodby DA, Xiaoqi Z (2002) Status and management of world sea urchin fisheries. In: Gibson RN, Barnes M, Atkinson RJA (eds) Oceanography and marine biology: an annual review, vol 40. Taylor & Francis Group, pp 343–425 Google Scholar
  2. Arizzi Novelli A, Argese A, Tagliapietra D, Bettiol C, Volpi Ghirardini A (2002) Toxicity of tributylitin and triphenyl to early life-stage of Paracentrotus lividus (Echinodermata: Echinoidea). Environ Toxicol Chem 21:859–864CrossRefGoogle Scholar
  3. Arizzi Novelli A, Losso C, Ghetti PF, Volpi Ghirardini A (2003) Toxicity of heavy metal using sperm cell and embryo toxicity with Paracentrotus lividus (Echinodermata: Echinoidea): comparison with exposure concentration in the lagoon of Venice. Italy. Environ Toxicol Chem 22(6):1295–1301CrossRefGoogle Scholar
  4. Azzolina JF (1988) Contribution à l’étude de la dynamique des populations de l’oursin comestibles Paracentrotus lividus. Thèse Doct, Univ Aix- Marseille 2Google Scholar
  5. Barker MF, Keogh JA, Lawrence JM, Lawrence AL (1998) Feeding rate, absorption efficiencies, growth and enhancement of gonad production in the New Zealand sea urchin Evechinus chloroticus valenciennes (Echinoidea: Echinodermata) fed prepared and natural diets. J Shellfish Res 17:1583–1590Google Scholar
  6. Barnes DKA, Crook AC (2001) Quantifying behavioural determinants of the costal European sea-urchin Paracentrotus lividus. Mar Biol 138:1205–1212CrossRefGoogle Scholar
  7. Basuyaux O, Blin JL (1998) Use of maize as a food source for sea urchins in a recirculating rearing system. Aquacult Int 6(3):233–247CrossRefGoogle Scholar
  8. Bayed A, Quiniou F, Benrha A, Guillou M (2005) The Paracentrotus lividus population from the northern Moroccan Atlantic coast: growth, reproduction and health condition. J Mar Biol Assoc UK 85:999–1007CrossRefGoogle Scholar
  9. Bendich A (1994) Recent advances in clinical research involving carotenoids. Pure Appl Chem 66(5):1017–1024CrossRefGoogle Scholar
  10. Beyer D, Pearse JS, Steele ME (1998) Both photoperiod and diet influence resource partitioning between somatic and gonad growth in sea urchin, Strongylocentrotus franciscanus. In: Mooi R, Telford M (eds) Echinoderms: San Francisco. Balkema Press, Rotterdam, pp 577–590Google Scholar
  11. Boyd CE, Tucker C, Mcnevin A, Bostickc K, Clay J (2007) Indicators of resource use efficiency and environmental performance in fish and crustacean aquaculture. Rev Fish Sci 15(4):327–360CrossRefGoogle Scholar
  12. Byrne M (1990) Annual reproductive cycles of the commercial sea urchin Paracentrotus lividus from an exposed intertidal and a sheltered subtidal habitat on the west coast of Ireland. Mar Biol 104:275–289CrossRefGoogle Scholar
  13. Cao G, Sofic E, Prior R (1996) Antioxidant capacity of tea and common vegetables. J Agric Food Chem 44:3426–3431CrossRefGoogle Scholar
  14. Crook AC (2003) Individual variation in the covering behaviour of the shallow water sea urchin Paracentrotus lividus. Mar Ecol 24(4):275–287CrossRefGoogle Scholar
  15. Crook AC, Barnes DKA (2001) Seasonal variation in the covering behaviour of the echinoid Paracentrotus lividus. Mar Ecol 22(3):231–239CrossRefGoogle Scholar
  16. Dado RG (1999) Nutritional benefits of specialty maize grain hybrids in dairy diets. J Anim Sci 77(Suppl. 2):197–207PubMedGoogle Scholar
  17. Dinnel PA, Link JM, Stober QJ (1987) Improved methodology for a sea urchin sperm cell bioassay for marine waters. Arch Environ Con Tox 16:23–32CrossRefGoogle Scholar
  18. Fabbrocini A, D’Adamo R (2011) Gametes and embryos of sea urchins (Paracentrotus lividus, Lmk.,1816) reared in confined conditions: their use in toxicity bioassays. Chem Ecol 27(2):105–115CrossRefGoogle Scholar
  19. FAO (eds) (2012) The state of world fisheries and aquaculture 2012. FAO, Rome, 209 pGoogle Scholar
  20. FAO Fisheries and Aquaculture Information and Statistics Service (eds) (2011) FAO yearbook. Fishery and aquaculture statistics. 2009/FAO annuaireGoogle Scholar
  21. Fenaux L (1968) Maturation des gonade set cycle saisonnier des larves chez A. lixula, P. lividus et P. microturberculatus (echinides) à Villefranche-Sur-Mer. Vie Milieu 13:1–52Google Scholar
  22. Fernandez C (1996) Croissance et nutrition de Paracentrotus lividus dans le cadre d’un projet aquacole avec alimentation artificielle. PhD Thesis, Université de Corse, FranceGoogle Scholar
  23. Fernandez N, Beiras R (2001) Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus lividus sea-urchin. Ecotoxicology 10:263–271PubMedCrossRefGoogle Scholar
  24. Fernandez C, Boudouresque CF (1997) Phenotypic plasticity of Paracentrotus lividus (Echinodermata: Echinoidea) in a lagoonal environment. Mar Ecol Prog Ser 152(1–3):145–154CrossRefGoogle Scholar
  25. Fernandez C, Boudouresque CF (2000) Nutrition of the sea urchin Paracentrotus lividus (Echinodermata: Echinoidea) fed different artificial food. Mar Ecol Prog Ser 204:131–141CrossRefGoogle Scholar
  26. Fernandez C, Caltagirone A (1994) Growth rate of adult sea urchins, Paracentrotus lividus in a lagoon environment: The effect of different diet types. In: David B, Guille A, Féral JP, Roux M (eds) Echinoderms through time. AA Balkema Press, Rotterdam, pp 655–660Google Scholar
  27. Fernandez C, Pergent G (1998) Effect of different formulated diets and rearing conditions on growth parameters in the sea urchin Paracentrotus lividus. J Shellfish Res 17:1571–1581Google Scholar
  28. Frantzis A, Grémare A (1992) Ingestion, absorption, growth rate of Paracentrotus lividus (Echinodermata: Echinoïdea) fed different macrophytes. Mar Ecol Prog Ser 95:169–183CrossRefGoogle Scholar
  29. Gago J, Range P, Luis O (2001) Growth, reproductive biology and habitat selection of the sea urchin Paracentrotus lividus in the coastal waters of Cascais, Portugal. In: Féral JP, David B (eds) Echinoderm research. AA Balkema Press, Lisse, pp 269–276Google Scholar
  30. Gago J, Range P, Luis O (2003) Growth, reproductive biology and habitat selection of the sea urchin Paracentrotus lividus in the coastal waters of Cascais, Portugal. In: Féral JP, David B (eds) Echinoderm research 2001. AA Balkema Press, Lisse, pp 269–276Google Scholar
  31. Gaion A, Scuderi A, Pellegrini D, Sartori D (2013) Arsenic Exposure Affects Embryo Development of Sea Urchin, Paracentrotus lividus (Lamarck, 1816). Bull Environ Contam Toxicol 91(5):565–570. doi: 10.1007/s00128-013-1098-0 PubMedCrossRefGoogle Scholar
  32. Giambartolomei FM (1990) Nuove acquisizioni sul test di fertilità dello sperma di riccio di mare Paracentrotus lividus. University of Padova, Italy, ThesisGoogle Scholar
  33. Grosjean P, Jangoux M (1994) Effect of light on feeding in cultivated echinoids (Paracentrotus lividus). In: David B, Guille A, Feral JP, Roux M (eds) Echinoderms through time. AA Balkema Press, Rotterdam, The Netherlands, pp 259–262Google Scholar
  34. Grosjean P, Spirlet C, Jangoux M (1996) Experimental study of growth in the echinoid Paracentrotus lividus (Lamarck, 1816) (Echinodermata). J Exp Mar Biol Ecol 201(1–2):173–184CrossRefGoogle Scholar
  35. Grosjean P, Spirlet C, Jangoux M (2003) A functional growth model with intraspecific competition applied to a sea urchin, Paracentrotus lividus. Can J Fish Aquat Sci 60(3):237–246CrossRefGoogle Scholar
  36. Guettaf M (1997) Contribution a l’étude de la variabilité du cycle reproductif (indice gonadique et histologie des gonades) chez Paracentrotus lividus (Echinodermata: Echinoidea) en Méditerranée sud occidentale (Algérie). These, Universite de la Mediterranee Aix-Marseille IIIGoogle Scholar
  37. ICES (1997) Report of the ICES Advisory Committee on the Marine EnvironmentGoogle Scholar
  38. Jacquin AG, Donval A, Guillou J, Leyzour S, Deslandes E, Guillou M (2006) The reproductive response of the sea urchins Paracentrotus lividus (G.) and Psammechinus miliaris (L.) to a hyperproteinated macrophytic diet. J Exp Mar Biol Ecol 339:43–54CrossRefGoogle Scholar
  39. Joseph JA, Shukitt-Hale B, Denisova NA, Prior RL, Cao G, Martin A, Taglialatela G, Bickford PC (1998) Long-term dietary strawberry, spinach, or vitamin E supplementation retards the onset of age-related neuronal signal-transduction and cognitive behavioral deficits. J Neurosci 18(19):8047–8055PubMedGoogle Scholar
  40. Kawakamia T, Tsushimab M, Katabamia Y, Minea M, Ishidaa A, Matsuno T (1998) Effect of β, β-carotene, β-echinenone, astaxanthin, fucoxanthin, vitamin A and vitamin E on the biological defense of the sea urchin Pseudocentrotus depressus. J Exp Mar Biol Ecol 226:165–174CrossRefGoogle Scholar
  41. Kelly M (2001) Environmental parameters controlling gametogenesis in the echinoid Psammechinus miliaris. J Exp Mar Biol Ecol 266:67–80CrossRefGoogle Scholar
  42. Klinger TS (1997) Gonad and somatic production of Strongylocentrotus droebachiensis fed manufactured feeds. Bull Aquac Assoc Can 1:35–37Google Scholar
  43. Krinsky NI (1994) The biological properties of carotenoids. Pure Appl Chem 66(5):1003–1010CrossRefGoogle Scholar
  44. Kuti JO, Konuru HB (2004) Antioxidant capacity and phenolic content in leaf extracts of tree spinach (Cnidoscolus spp.). J Agric Food Chem 52(1):117–121PubMedCrossRefGoogle Scholar
  45. Lawrence JM (1976) Covering response in sea urchins. Nature 262:490–491CrossRefGoogle Scholar
  46. Lawrence J, Fenaux L, Corre MC, Lawrence A (1992) The effect of quantity and quality of prepared diets on production in Paracentrotus lividus (Echinodermata: Echinoidea). In: Scalera-Liaci L, Canicatti C (eds) Echinoderm research 1991. AA Balkema Press, Rotterdam, pp 107–110Google Scholar
  47. Lawrence JM, Olave S, Otaiza R, Lawrence AL, Bustos E (1997) Enhancement of gonad production in the sea urchin Loxechinus albus in Chile fed extruded feeds. J World Aquac Soc 28:91–96CrossRefGoogle Scholar
  48. Le Gall P (1990) Culture of echinoderms. In: Barnabé G (ed) Aquaculture, vol 1. Ellis Horwood Press, NewYork, pp 443–462Google Scholar
  49. Lera S, Pellegrini D (2006) Evaluation of the fertilization capability of Paracentrotus lividus sea urchin storaged gametes by the exposure to different aqueous matrices. Environ Monit Assess 119:1–13PubMedCrossRefGoogle Scholar
  50. Lozano J, Galera J, Lopez S, Turon X, Palacin C, Morera G (1995) Biological cycles and recruitment of Paracentrotus lividus (Echinodermata: Echinoidea) in two contrasting habitats. Mar Ecol Prog Ser 122:179–191CrossRefGoogle Scholar
  51. Luis O, Delgado F, Gago J (2005) Year-round captive spawning performance of the sea urchin Paracentrotus lividus: relevance for the use of its larvae as live feed. Aquat Living Resour 18:45–54CrossRefGoogle Scholar
  52. Marsh AG, Wats SA (2007) Biochemical and energy requirements of gonad development. In: Lawrence J (ed) Edible sea urchins: biology and ecology, 2nd edn. Elsevier, Amsterdam, pp 35–53CrossRefGoogle Scholar
  53. Martínez I, García FJ, Sànchez AI, Daza JL, del Castillo F (2003) Biometric parameters and reproductive cycle of Paracentrotus lividus (Lamarck) in three habitats of the southern Spain. In: Féral JP, David D (eds) Echinoderm research 2001. AA Balkema Press, Lisse, pp 281–287Google Scholar
  54. Matsuno T (1991) Xanthophylls as precursors of retinoids. Pure Appl Chem 63(1):81–88CrossRefGoogle Scholar
  55. McBride SC, Pinnix WD, Lawrence JM, Lawrence AL, Mulligan TM (1997) The effect of temperature on production of gonads by the sea urchin Strongylocemtrotus franciscanus fed natural and prepared diets. J World Aquac Soc 28:357–365CrossRefGoogle Scholar
  56. McCarron E, Burnell G, Kerry J, Mouzakitis G (2009) An experimental assessment on the effects of photoperiod treatments on the somatic and gonadal growth of the juvenile European purple sea urchin Paracentrotus lividus. Aquac Res 41(7):1072–1081. doi: 10.1111/j.1365-2109.2009.02392.x Google Scholar
  57. Millott N (1954) Sensitivity to light and the reactions to changes in light intensity of the echinoid Diadema antillaum. Philos T Roy Soc BB 238:187–220CrossRefGoogle Scholar
  58. Millott N (1975) The photosensitivity of echinoids. In: Russell FS, Yonge M (eds) Advances in marine biology. Academic Press, NewYork, pp 1–52Google Scholar
  59. Minor MA, Scheibling RE (1997) Effects of food ration and feeding regime on growth and reproduction of the sea urchin Strongylocentrotus droebachiensis. Mar Biol 129:159–167CrossRefGoogle Scholar
  60. Nacci D, Jackim E, Walsh R (1986) Comparative evaluation of three rapid marine toxicity tests: sea urchin early embryo growth test, sea urchin sperm cell toxicity test and Microtox. Environ Toxicol Chem 5:521–525CrossRefGoogle Scholar
  61. Pantazis PA, Kelly MS, Connolly JG, Black KD (2000) Effect of artificial diet on growth, lipid utilization and gonad biochemistry in the adult sea urchin Psammechinus miliaris. J Shellfish Res 19:995–1001Google Scholar
  62. Pearse JS, Cameron RA (1991) Reproduction of marine invertebrates. In: Giese AC, Pearse JS, Pearse VB (eds) Echinodermata: Echinodea, vol VI, Echinoderms and Lophophorates. The Boxwood Press, Pacific Grove, pp 435–448Google Scholar
  63. Pearse JB, Pearse VB, Davis KK (1986) Photoperiodic regulation of gametogenesis and growth in the sea urchin, Strongylocentrotus purpuratus. J Exp Biol 237:107–118Google Scholar
  64. Qi GH, Diao QY, Tu Y, Wu SG, Zhang SH (2004) Nutritional evalutation and utilization of quality protein maize (QPM) in animal feed. In: FAO expert consultation and workshop, Bangkok, Thailand, 29 April–3 May 2002. Protein sources for the animal feed industry. Food and Agriculture Organization (FAO), Rome, pp 185–198Google Scholar
  65. Sánchez-España AI, Martínez-Pita I, García FJ (2004) Gonadal growth and reproduction in the commercial sea urchin Paracentrotus lividus (Lamarck, 1816) (Echinodermata: echinoidea) from southern Spain. Hydrobiologia 519:61–72CrossRefGoogle Scholar
  66. Sartori D (2013) Echinoculture: rearing of Paracentrotus lividus in recirculating aquaculture system. Experimentations of artificial diets for sexual maturation. PhD Thesis, University of Naples «Federico II», ItalyGoogle Scholar
  67. Sellem F, Langar H, Pesando D (2000) Age et croissance de l’oursin Paracentrotus lividus Lamarck, 1816 (Echinodermata-Echinoidea) dans le golfe de Tunis (Méditerranée). Oceanol Acta 23(5):607–613CrossRefGoogle Scholar
  68. Sharp DT, Gray JE (1962) Studies on factor affecting the local distribution of two sea urchin Arbacia punctulata and Lytechinus variegates. Ecology 43(2):309–313CrossRefGoogle Scholar
  69. Shpigel M, McBride S, Marciano S, Lupatsch I (2004) The effect of photoperiod and temperature on the reproduction of European sea urchin Paracentrotus lividus. Aquaculture 232:343–355CrossRefGoogle Scholar
  70. Shpigel M, McBride S, Marciano S, Ron S, Ben-Amotz A (2005) Improving gonad colour and somatic index in the European sea urchin Paracentrotus lividus. Aquaculture 245:101–109CrossRefGoogle Scholar
  71. Siikavuopio SI, Dale T, Mortensen A, Foss A (2007) Effects of hypoxia on feed intake and gonad growth in the green sea urchin, Strongylocentrotus droebachiensis. Aquaculture 266:112–116CrossRefGoogle Scholar
  72. Spirlet C, Grosjean Ph, Jangoux M (1998) Reproductive cycle of the echinoid Paracentrotus lividus: analysis by means of the maturity index. Invertebr Reprod Dev 34:69–81CrossRefGoogle Scholar
  73. Spirlet C, Grosjean Ph, Jangoux M (2000) Optimisation of gonad growth by manipulation of temperature and photoperiod in cultivated sea urchins, Paracentrotus lividus (Lamarck) (Echinodermata). Aquaculture 185:85–99CrossRefGoogle Scholar
  74. Tsushima M, Kawakami T, Mine M, Matsuno T (1997) The role of carotenoids in development in sea urchin Pseudocentrotus depressus. Invert Reprod Dev 32(2):149–153CrossRefGoogle Scholar
  75. Turon X, Giribert G, López S, Palacín C (1995) Growth and population structure of Paracentrotus lividus (Echinodermata: Echinoidea) in two contrasting habitats. Mar Ecol Prog Ser 122:193–204CrossRefGoogle Scholar
  76. United Nations, Department of Economic and Social Affairs, Population Division (2009) World Population Prospects: The 2008 Revision, highlights, working paper no. ESA/P/WP.210Google Scholar
  77. Verling E, Crook AC, Barnes DKA (2002) Covering behaviour in Paracentrotus lividus: is light important? Mar Biol 140:391–396CrossRefGoogle Scholar
  78. Volpi Ghirardini A, Arizzi Novelli A (2001) A sperm cell toxicity test procedure for the Mediterranean species Paracentrotus lividus (Echinodermata: Echinoidea). Environ Technol 22:439–445PubMedCrossRefGoogle Scholar
  79. Walker CW, Lesser MP (1998) Manipulation of food and photoperiod promotes out-of-season gametogenesis in the green sea urchin Strongylocentrotus droebachiensis: implications for aquaculture. Mar Biol 132:663–676CrossRefGoogle Scholar
  80. Warnau M, Iaccarino M, De Biase A, Temara A, Jangoux M, Dubois P, Pagano G (1996) Spermiotoxicity and embryotoxicity of heavy metals in the Echinoid Paracentrotus lividus. Environ Toxicol Chem 15:1931–1936CrossRefGoogle Scholar
  81. Williams H (2002) Sea urchin fisheries of the world: a review of their status, management strategies and biology of the principal species—background paper, Department of Primary Industries and Water, Tasmania.$FILE/World_urchin_%20fisheries.pdf
  82. Yamamoto M, Ishine M, Yoshida M (1998) Gonadal maturation independent of photoic conditions in laboratory reared sea urchins, Pseudocentrotus depressus and Hemicentrotus pulcherrinus. Zool Sci 5:979–998Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA)RomeItaly
  2. 2.CRIAcqUniversity of Naples “Federico II”NaplesItaly

Personalised recommendations