Skip to main content

Economic optimisation in seabream (Sparus aurata) aquaculture production using a particle swarm optimisation algorithm

Abstract

The purpose of this study is the economic optimisation of seabream farming through the determination of the production strategies that maximise the present operating profits of the cultivation process. The methodology applied is a particle swarm optimisation algorithm based on a bioeconomic model that simulates the process of seabream fattening. The biological submodel consists of three interrelated processes, stocking, growth, and mortality, and the economic submodel considers costs and revenues related to the production process. Application of the algorithm to seabream farming in Spain reveals that the activity is profitable and shows competitive differences associated with location. Additionally, the applications of the particle swarm optimisation algorithm could be of interest for the management of other important species, such as salmon (Salmo salar), catfish (Ictalurus punctatus), or tilapia (Oreochromis niloticus).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Arnason R (1992) Optimal feeding schedules and harvesting time in aquaculture. Mar Resour Econ 7:15–35

    Google Scholar 

  • Asche F, Bjørndal T (2011) The economics of salmon aquaculture. Blackwell Publishing Ltd, Oxford

    Book  Google Scholar 

  • Bjørndal T (1988) Optimal harvesting of farmed fish. Mar Resour Econ 5:139–159

    Google Scholar 

  • Bjørndal T (1990) The economics of salmon aquaculture. Blackwell Publishing Ltd, Oxford

    Google Scholar 

  • Bjørndal T, Lane DE, Weintraub A (2004) Operational research models and the management of fisheries and aquaculture: a review. Eur J Oper Res 156:533–540. doi:10.1016/S0377-2217(03)00107-3

    Article  Google Scholar 

  • Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv 35:268–308

    Article  Google Scholar 

  • Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, New York

    Google Scholar 

  • Brett JR, Groves TDD (1979) Physiological energetics. In: Hoar WS, Randall DJ, Brett JR (eds) Fish physiology. Academic Press, London

    Google Scholar 

  • Cacho OJ, Hatch U, Kinnucan H (1990) Bioeconomic analysis of fish growth: effects of dietary protein and ration size. Aquaculture 88:223–238. doi:10.1016/0044-8486(90)90150-L

    Article  Google Scholar 

  • Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Song S, Kong L, Cheng J (ed) Proceedings of the sixth international symposium on micro machine and human, IEEE Press, Piscataway

  • Forsberg OI (1996) Optimal stocking and harvesting of size-structured farmed fish: a multi-period linear programming approach. Math Comput Simulat 42:299–305. doi:10.1016/0378-4754(95)00132-8

    Article  Google Scholar 

  • Gasca-Leyva E (1999) Bioeconomía del cultivo de la dorada (Sparus Aurata). Master’s Thesis. University of Las Palmas de Gran Canaria, Spain

  • Gasca-Leyva E, León CJ, Hernández JM (2003) Management strategies for seabream Sparus Aurata cultivation in floating cages in the Mediterranean Sea and Atlantic Ocean. J World Aquacult Soc 34:29–39. doi:10.1111/j.1749-7345.2003.tb00036.x

    Article  Google Scholar 

  • Gasca-Leyva E, León CJ, Hernández JM, Vergara JM (2002) Bioeconomic analysis of production location of sea bream (Sparus Aurata) cultivation. Aquaculture 213:219–232. doi:10.1016/S0044-8486(02)00031-5

    Article  Google Scholar 

  • Gates JM, Mueller JJ (1975) Optimizing the growth and marketing of fish in a controlled environment. Mar Technol 9:13–16

    Google Scholar 

  • Heaps T (1993) The optimal feeding of a farmed fish. Mar Resour Econ 8:89–99

    Google Scholar 

  • Hernández JM, Gasca-Leyva E, León CJ, Vergara JM (2003) A growth model for gilthead seabream (Sparus aurata). Ecol Model 165:265–283. doi:10.1016/S0304-3800(03)00095-4

    Article  Google Scholar 

  • Hernández JM, León-Santana M, León CJ (2007) The role of the water temperature in the optimal management of marine aquaculture. Eur J Oper Res 181:872–886. doi:10.1016/j.ejor.2006.06.021

    Article  Google Scholar 

  • Karp L, Sadeh A, Griffin WL (1986) Cycles in agricultural production: the case of aquaculture. Am J Agr Econ 68:553–561

    Article  Google Scholar 

  • León CJ, Hernández JM, Gasca-Leyva E (2001) Cost minimization and input substitution in the production of gilthead seabream. Aquacult Econ Manage 5:147–170. doi:10.1080/13657300109380284

    Article  Google Scholar 

  • Leung P (1986) Applications of systems modeling in aquaculture. Aquacult Eng 5:171–182. doi:10.1016/0144-8609(86)90015-4

    Article  Google Scholar 

  • Leung P, Shang YC (1989) Modeling prawn production management system: a dynamic Markov decision approach. Agr Syst 29:5–20. doi:10.1016/0308-521X(89)90067-X

    Article  Google Scholar 

  • Llorente I, Luna L (2012) Explanatory model of the profitability of marine fish farming companies. Empirical application to the breeding of seabream (Sparus aurata) and European seabass (Dicentrarchus labrax) in Spain. Agr Resour Econ 12:31–55. doi:10.7201/earn.2012.02.02

    Google Scholar 

  • Llorente I, Luna L (2013) The competitive advantages arising from different environmental conditions in seabream, Sparus aurata, production in the Mediterranean Sea. J World Aquacult Soc 44:611–627. doi:10.1111/jwas.12069

    Article  Google Scholar 

  • Luna L (2002) Economic analysis of finfish mariculture operations in Spain. Aquacult Econ Manage 6:65–79. doi:10.1080/13657300209380304

    Article  Google Scholar 

  • McNown W, Seireg A (1983) Computer aided optimum design and control of staged aquaculture systems. J World Aquacult Soc 14:415–433. doi:10.1111/j.1749-7345.1983.tb00094.x

    Article  Google Scholar 

  • Mistiaen JA, Strand I (1999) Optimal feeding and harvest time for fish weight-dependent prices. Mar Resour Econ 13:231–246

    Google Scholar 

  • Mouser C, Dunn S (2005) Comparing genetic algorithms and particle swarm optimization for an inverse problem exercise. Aust N Z Ind Appl Math 46:C89–C101

    Google Scholar 

  • Osman IH, Laporte G (1996) Metaheuristics: a bibliography. Ann Oper Res 63:513–623. doi:10.1007/BF02125421

    Article  Google Scholar 

  • Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization: an overview. Swarm Intell-US 1:33–57. doi:10.1007/s11721-007-0002-0

    Article  Google Scholar 

  • Rauch HE, Botsford LW, Shleser RA (1975) Economic optimization of an aquaculture facility. IEEE Trans Autom Control AC-20:310–319. doi:10.1109/TAC.1975.1100952

  • Rizzo G, Spagnolo M (1996) A model for the optimal management of sea bass Dicentrarchus labrax aquaculture. Marine Resourc Found 11:267–286

    Google Scholar 

  • Sparre P (1976) A Markovian decision process applied to optimization of production planning in fish farming. Danish Inst Fish Mar Res 7:111–197

    Google Scholar 

  • Stauffer GD (1973) A growth model for salmonids reared in hatchery environments. Master’s Thesis, University of Washington, Washington, USA

  • Uysal O, Bulkan S (2008) Comparison of genetic algorithm and particle swarm optimization for bicriteria permutation flowshop scheduling problem. Int J Comput Intel Res 4:129–134

    Google Scholar 

  • Yu R, Leung P (2005) Optimal harvesting strategies for a multi-cycle and multi-pond shrimp operation: a practical network model. Math Comput Simul 68:339–354. doi:10.1016/j.matcom.2005.01.018

    Article  Google Scholar 

Download references

Acknowledgments

This work was made possible through the collaboration of the Spanish Ministry of Agriculture, Food and Environment and the Spanish Port Authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Llorente.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Llorente, I., Luna, L. Economic optimisation in seabream (Sparus aurata) aquaculture production using a particle swarm optimisation algorithm. Aquacult Int 22, 1837–1849 (2014). https://doi.org/10.1007/s10499-014-9786-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-014-9786-2

Keywords

  • Bioeconomics
  • Economic optimisation
  • Operational research
  • Particle swarm optimisation
  • Seabream
  • Sparus aurata