Advertisement

Aquaculture International

, Volume 22, Issue 4, pp 1391–1401 | Cite as

Feminization and growth of juvenile fat snook Centropomus parallelus fed diets with different concentrations of estradiol-17β

  • Cristina Vaz Avelar de Carvalho
  • Gabriel Passini
  • Wanessa de Melo Costa
  • Vinicius Ronzani Cerqueira
Article
  • 274 Downloads

Abstract

In this study, we evaluated the effect of diets with various concentrations of estradiol-17β (E2) on the feminization, growth and survival of juvenile fat snook. Over a 45-day period, the juveniles were fed with five diets containing 0, 25, 50, 75 and 100 mg E2/kg feed. Three replicates were run for each diet. After this hormonal treatment, the fishes were transferred to 1-m3 net cages, where they remained for 12 months. During this period, they were fed a commercial diet without added hormones. During the feminization, the control fish grew more than those in the other treatments, and the survival rates did not differ significantly among the treatments. At the end of the experiment growth did not differ among the treatments. In the control treatment, 80.85 % of the fish were male, and the females were significantly larger than the males. All of the treatments with E2 produced 100 % females. No intersex fish were found in this study. This research showed that it is possible to obtain 100 % fat snook females using feeds with 25 mg E2/kg for 45 days without impairing the growth or survival of the fish.

Keywords

Estradiol-17β Growth performance Marine fish Sex ratio Protandric 

Notes

Acknowledgments

We would like to thank CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior for the scholarship. This work was funded by the Brazilian research council (Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq) and the Ministry of Fisheries and Aquaculture through two research projects coordinated by EPAGRI (Project No. 559790/2009-0) and UFSC (Project No. 559777/2009-4). Special thanks go to the company Nicoluzzi Rações Ltda. that provided us with the diets used in this study.

References

  1. Ali M, Nicieza A, Wootton RJ (2003) Compensatory growth in fishes: a response to growth depression. Fish Fish 4:147–190CrossRefGoogle Scholar
  2. Alvarez-Lajonchère LS, Tsuzuki MY (2008) A review of methods for Centropomus spp. (snooks) aquaculture and recommendations for the establishment of their culture in Latin America. Aquac Res 39:684–700CrossRefGoogle Scholar
  3. Alvarez-Lajonchère LS, Cerqueira VR, Silva ID, Araújo J, Reis M (2002) Mass production of juveniles of the fat snook Centropomus parallelus in Brazil. J World Aquac Soc 33:506–516CrossRefGoogle Scholar
  4. Amaral Jr HA, Nunes MFS, Garcia S (2008) Análise de diferentes dosagens de hormônio na ração, para definição de um protocolo de feminilização do jundiá Rhamdia quelen. REDVET. http://www.veterinaria.org/revistas/redvet/n121208/121212.pdf. Cited 12 Nov 2012
  5. Arslan T, Phelps RP, Osborne JA (2009) Effects of oestradiol-17β or 17α-methyltestosterone administration on gonadal differentiation of largemouth bass Micropterus salmoides (Lacepède). Aquac Res 40:1813–1822CrossRefGoogle Scholar
  6. Barroso MV, Castro JC, Aoki PCM, Helmer JL (2002) Valor nutritivo de alguns ingredientes para o robalo Centropomus parallelus. Rev Bras Zootec 31:2157–2164CrossRefGoogle Scholar
  7. Cavalli RO, Hamilton S (2007) A piscicultura marinha no Brasil—Afinal, quais as espécies boas para cultivar? Panorama da Aqüicultura 17:50–55Google Scholar
  8. Cerqueira, VR (2010) Cultivo do robalo-peva, Centropomus parallelus. In: Baldisserotto B, Carvalho L (eds) Espécies nativas para a piscicultura no Brasil, Santa Maria, pp 489–520Google Scholar
  9. Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological and environmental influences. Aquaculture 208:191–364CrossRefGoogle Scholar
  10. Flynn SR, Benfey TJ (2007) Sex differentiation and aspects of gametogenesis in shortnose sturgeon Acipenser brevirostrum Lesueur. J Fish Biol 70:1027–1044CrossRefGoogle Scholar
  11. Frisch A (2004) Sex-change and gonadal steroids in sequentially-hermaphroditic teleost fish. Rev Fish Biol Fish 14:481–499CrossRefGoogle Scholar
  12. Gorshkov S, Gorshkova G, Colorni B (2004) Effects of natural estradiol-17β and synthetic 17α-ethynylestradiol on direct feminization of European sea bass Dicentrarchus labrax. J World Aquac Soc 35:167–177CrossRefGoogle Scholar
  13. Grier HJ, Taylor RG (1998) Testicular maturation and regression in the common snook. J Fish Biol 53:521–542CrossRefGoogle Scholar
  14. Hendry C, Martin-Robichaud DJ, Benfey TJ (2003) Hormonal sex reversal of Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 219:769–781CrossRefGoogle Scholar
  15. Imai S, Koyama J, Fujii K (2005) Effects of 17β-estradiol on the reproduction of java-medaka (Oryzias javanicus), a new test fish species. Mar Pollut Bull 51:708–714PubMedCrossRefGoogle Scholar
  16. Kato K, Miayashita S, Murata O, Kumai H (2003) Gonadal sex differentiation and sex control in red sea bream, Pagrus major. Fish Physiol Biochem 28:155–156CrossRefGoogle Scholar
  17. Kim DS, Nam YK, Jo J-Y (1997) Effect of oestradiol-17β immersion treatments on sex reversal of mud loach, Misgurnus mizolepis (Günther). Aquac Res 28:941–946CrossRefGoogle Scholar
  18. Mitcheson YS, Liu M (2008) Functional hermaphroditism in teleosts. Fish Fish 9:1–43CrossRefGoogle Scholar
  19. Omoto N, Maebayashi M, Mitsuashi E, Yoshitomi K, Adachi S, Yamouchi K (2002) Effects of estradiol-17β and 17α-methyltestosterone on gonadal sex differentiation in the F2 hybrid sturgeon, the bester. Fish Sci 68:1047–1054CrossRefGoogle Scholar
  20. Park I, Kim J, Cho SH, Kim DS (2004) Sex differentiation and hormonal sex reversal in the bagrid catfish Pseudobagrus fulvidraco (Richardson). Aquaculture 232:183–193CrossRefGoogle Scholar
  21. Piferrer F (2001) Endocrine sex control strategies for the feminization of teleost fish. Aquaculture 197:229–281CrossRefGoogle Scholar
  22. Rhody NR, Neidig CL, Grier HJ, Main KL, Migaud H (2013) Assessing reproductive condition in captive and wild common snook stocks: a comparison between the wet mount technique and histological preparations. Trans Am Fish Soc 142:979–988CrossRefGoogle Scholar
  23. Rougeot C, Jacobs B, Kestemont P, Melard C (2002) Sex control and sex determinism study in Eurasian perch, Perca fluviatilis, by use of hormonally sex-reversed male breeders. Aquaculture 211:81–89CrossRefGoogle Scholar
  24. Saillant E, Fostier A, Menu B, Haffray P, Chatain B (2001) Sexual growth dimorphism in sea bass Dicentrarchus labrax. Aquaculture 202:371–387CrossRefGoogle Scholar
  25. Saillant E, Chatain B, Menu B, Laureau S, Thimonier J, Chatain B (2003) Sexual differentiation and juvenile intersexuality in the european sea bass (Dicentrarchus labrax). J Zool Lond 260:53–63CrossRefGoogle Scholar
  26. Strüssmann CA, Nakamura M (2002) Morphology, endocrinology and environmental modulation of gonadal sex differentiation in teleost fishes. Fish Physiol Biochem 26:13–29CrossRefGoogle Scholar
  27. Taylor RG, Grier HJ, Whittington JA (1998) Spawning rhythms of common snook in Florida. J Fish Biol 53:502–520CrossRefGoogle Scholar
  28. Vazzoler AEAM (1996) Biologia da reprodução de peixes teleósteos: teoria e prática. EDUEM, MaringáGoogle Scholar
  29. Verslycke T, Vandenbergh GF, Versonnen B, Arijis K, Janssen CR (2002) Induction of vitellogenesis in 17α-ethinylestradiol-exposed rainbow trout (Oncorhynchus mykiss): a method comparison. Comp Biochem Physiol C 132:483–492Google Scholar
  30. Wang H, Gao Z, Beres B, Ottobre J, Wallat G, Tiu L, Rapp D, O’Bryant P, Yao H (2008) Effects of estradiol-17β on survival, growth performance, sex reversal and gonadal structure of bluegill sunfish Lepomis macrochirus. Aquaculture 285:216–223CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Cristina Vaz Avelar de Carvalho
    • 1
  • Gabriel Passini
    • 1
  • Wanessa de Melo Costa
    • 2
  • Vinicius Ronzani Cerqueira
    • 1
  1. 1.Laboratório de Piscicultura Marinha (LAPMAR), Departamento de Aquicultura, Centro de Ciências AgráriasUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  2. 2.Fundação Instituto de Pesca do Estado do Rio de Janeiro – FIPERJRio de JaneiroBrazil

Personalised recommendations