Aquaculture International

, Volume 22, Issue 2, pp 509–521 | Cite as

Selective method for cyanobacterial bloom removal: hydraulic jet cavitation experience

  • Daniel JančulaEmail author
  • Přemysl Mikula
  • Blahoslav Maršálek
  • Pavel Rudolf
  • František Pochylý


The aim of this study was to investigate the suitability of hydraulic jet cavitation as a method for cyanobacterial water-bloom management. Effects of cavitation were studied on laboratory culture of the cyanobacterium Microcystis aeruginosa, on a culture of a green alga Chlorella kessleri (as a non-target species) as well as on a real cyanobacterial biomass with Microcystis sp. as a dominant species. Our results suggested that the cavitation treatment of cyanobacteria is capable of causing the disintegration of their gas vesicles. Using this treatment, up to 99 % removal efficiency of cyanobacteria was achieved. Moreover, no effect on cyanobacterial membrane integrity or metabolic activity was detected by flow cytometry; thus, hydraulic cavitation seems to be harmless from the viewpoint of possible release of cyanotoxins into the water column. The green algae (here C. kessleri) were not affected negatively by the cavitation, and thus, they may still act as the natural nutrient competitors of cyanobacteria in lakes, ponds or reservoirs treated by cavitation.


Esterase activity Membrane integrity Bioassay Ultrastructure Flow cytometry 



We would like to thank Eliška Zapomělová for providing the laboratory strain of M. aeruginosa. The research was supported by long-term research development project no. RVO 67985939 (Academy of Sciences of the Czech Republic). We gratefully knowledge the Czech Science Foundation for support of the research under project No. 101/09/1715 “Cavitating vortical structures induced by rotating liquid” as well.


  1. Bold HC (1949) The morphology of Chlamydomonas chlamydogama, sp. nov. Bull Torrey Bot Club 76:101–108CrossRefGoogle Scholar
  2. Bott TR, Tianqing L (2003) Ultrasound enhancement of biocide efficiency. Ultrason Sonochem 11:323–326CrossRefGoogle Scholar
  3. Brookes JD, Geary SM, Ganf GG, Burch MD (2000) Use of FDA and flow cytometry to assess metabolic activity as an indicator of nutrient status in phytoplankton. Mar Freshw Res 51:817–823CrossRefGoogle Scholar
  4. Carmichael WW, Azevedo S, An JS, Molica RJR, Jochimsen EM, Lau S, Rinehart KL, Shaw GR, Eaglesham GK (2001) Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environ Health Perspect 109:663–668PubMedCentralPubMedCrossRefGoogle Scholar
  5. Costa PR, Botelho MJ, Rodrigues SM (2009) Accumulation of paralytic shellfish toxins in digestive gland of Octopus vulgaris during bloom events including the dinoflagellate Gymnodinium catenatum. Mar Pollut Bull 58:1747–1750PubMedCrossRefGoogle Scholar
  6. Daly RI, Ho L, Brookes JD (2007) Effect of chlorination on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation. Environ Sci Technol 41:4447–4453PubMedCrossRefGoogle Scholar
  7. Douma M, Ouahid Y, del Campo FF, Loudiki M, Mouhri K, Oudra B (2010) Identification and quantification of cyanobacterial toxins (microcystins) in two Moroccan drinking-water reservoirs (Mansour Eddahbi, Almassira). Environ Monit Assess 160:439–450PubMedCrossRefGoogle Scholar
  8. Francko DA, Al-Hamdani S, Joo GJ (1994) Enhancement of nitrogen fixation in Anabaena flos-aque (Cyanobacteria) via low-dose ultrasonic treatment. J Appl Phycol 6:455–458CrossRefGoogle Scholar
  9. Gogate PR (2011) Hydrodynamic cavitation for food and water processing. Food Bioprocess Technol 4:996–1011CrossRefGoogle Scholar
  10. Gregor J, Jančula D, Maršálek B (2008) Growth assays with mixed cultures of cyanobacteria and algae assessed by in vivo fluorescence: one step closer to real ecosystems? Chemosphere 70:1873–1878PubMedCrossRefGoogle Scholar
  11. Hadjoudja S, Vignoles C, Deluchat V, Lenain JF, Le Jeune AH, Baudu M (2009) Short term copper toxicity on Microcystis aeruginosa and Chlorella vulgaris using flow cytometry. Aquat Toxicol 94:255–264PubMedCrossRefGoogle Scholar
  12. Hao HW, Wu MS, Chen YF, Tang JW, Wu QY (2004) Cavitation mechanism in cyanobacterial growth inhibition by ultrasonic irradiation. Colloid Surf B-Biointerfaces 33:151–156CrossRefGoogle Scholar
  13. Haselkorn R (1986) Organization of the genes for nitrogen-fixation in photosynthetic bacteria and cyanobacteria. Annu Rev Microbiol 40:525–547PubMedCrossRefGoogle Scholar
  14. Hayes PK, Walsby AE (1986) The inverse correlation between width and strength of gas vesicles in cyanobacteria—a solution to problems of pressure. Br Phycol J 21:330CrossRefGoogle Scholar
  15. Heng L, Jun N, Wen-jie H, Guibai L (2009) Algae removal by ultrasonic irradiation-coagulation. Desalination 239:191–197CrossRefGoogle Scholar
  16. ISO 8692 (1989) Water quality—fresh water algal inhibition test with Scenedesmus subspicatus and Selenastrum capricornutum, GenevaGoogle Scholar
  17. Jamers A, Lenjou M, Deraedt P, Van Bockstaele D, Blust R, de Coen W (2010) Flow cytometric analysis of the cadmium-exposed green alga Chlamydomonas reinhardtii (Chlorophyceae). Eur J Phycol 44:541–550CrossRefGoogle Scholar
  18. Jančula D, Maršálek B (2011) Critical review of actually available chemical compounds for prevention of and management of cyanobacterial blooms. Chemosphere 95:1415–1422CrossRefGoogle Scholar
  19. Jančula D, Míkovcová M, Adámek Z, Maršálek B (2008) Changes in the photosynthetic activity of Microcystis colonies after gut passage through Nile tilapia (Oreochromis niloticus) and silver carp (Hypophthalmichthys molitrix). Aquac Res 39:311–314CrossRefGoogle Scholar
  20. Jochem FJ (1999) Dark survival strategies in marine phytoplankton assessed by cytometric measurement of metabolic activity with fluorescein diacetate. Marine Biol 135:721–728Google Scholar
  21. Joyce EM, Mason TJ (2008) Sonication used as a biocide a review: ultrasound a greener alternative to chemical biocides? Chim-oggi 26:22Google Scholar
  22. Joyce EM, Wu XG, Mason TJ (2010) Effect of ultrasonic frequency and power on algae suspensions. J Environ Sci Health Part A-Toxic/Hazard Subst Environ Eng 45:863–866CrossRefGoogle Scholar
  23. Kabzinski AKM, Juszczak R, Miekos E, Tarczynska M, Sivonen K, Rapala J (2000) The first report about the presence of cyanobacterial toxins in Polish lakes. Pol J Environ Stud 9:171–178Google Scholar
  24. Kemp A, John J (2006) Microcystins associated with Microcystis dominated blooms in the southwest wetlands, Western Australia. Environ Toxicol 21:125–130PubMedCrossRefGoogle Scholar
  25. Koropatkin NM, Koppenaal DW, Pakrasi HB, Smith TJ (2007) The structure of a cyanobacterial bicarbonate transport protein, CmpA. J Biol Chem 282:2606–2614PubMedCrossRefGoogle Scholar
  26. Kotopoulis S, Schommartz A, Postema M (2009) Sonic cracking of blue-green algae. Appl Acoust 70:1306–1312CrossRefGoogle Scholar
  27. Lacerot G, Kruk C, Lurling M, Schaffer M (2013) The role of subtropical zooplankton as grazers of phytoplankton under different predation levels. Freshw Biol 58:494–503CrossRefGoogle Scholar
  28. Lee TJ, Nakano K, Matsumura M (2000) A new method for the rapid evaluation of gas vacuoles regeneration and viability of cyanobacteria by flow cytometry. Biotechnol Lett 22:1833–1838CrossRefGoogle Scholar
  29. Lee TJ, Nakano K, Matsumura M (2002) A novel strategy for cyanobacterial bloom control by ultrasonic irradiation. Wat Sci Technol 46:207–215Google Scholar
  30. Lehman PW, Boyer G, Hall C, Waller S, Gehrts K (2005) Distribution and toxicity of a new colonial Microcystis aeruginosa bloom in the San Francisco Bay Estuary, California. Hydrobiologia 541:87–99CrossRefGoogle Scholar
  31. Li J, Ou DY, Zheng LL, Gan NQ, Song LR (2011) Applicability of the fluorescein diacetate assay for metabolic activity measurement of Microcystis aeruginosa (Chroococcales, Cyanobacteria). Phycol Res 59:200–207CrossRefGoogle Scholar
  32. Mahvi AH, Dehghani MH (2005) Evaluation of ultrasonic technology in removal of algae from surface waters. Pak J Biol Sci 8:1457–1459CrossRefGoogle Scholar
  33. Maršálek B, Jančula B, Maršálková E, Mashlan M, Šafářová K, Tuček J, Zbořil R (2012) Multimodal action and selective toxicity of zerovalent iron nanoparticles against cyanobacteria. Environ Sci Technol 46:2316–2323PubMedCrossRefGoogle Scholar
  34. Mikula P, Zezulka S, Jančula D, Maršálek B (2012) Metabolic activity and membrane integrity changes in Microcystis aeruginosa—new findings on hydrogen peroxide toxicity in cyanobacteria. Eur J Phycol 47:195–206CrossRefGoogle Scholar
  35. Nebe-Von-Caron G, Stephens PJ, Hewitt CJ, Powell JR, Badley RA (2000) Analysis of bacterial function by multicolour fluorescence flow cytometry and single cell sorting. J Microbiol Meth 42:97–114Google Scholar
  36. Rajasekhar P, Fan L, Nguyen T, Roddick FA (2012) A review of the use of sonication to control cyanobacterial blooms. Wat Res 46:4319–4329CrossRefGoogle Scholar
  37. Regel RH, Brookes JD, Ganf GG, Griffiths R (2004) The influence of experimentally generated turbulence on the Mash01 unicellular Microcystis aeruginosa strain. Hydrobiologia 517:107–120CrossRefGoogle Scholar
  38. Smith JL, Boyer GL, Zimba PV (2008) A review of cyanobacterial odorous and bioactive metabolites: impacts and management alternatives in aquaculture. Aquaculture 280:5–20CrossRefGoogle Scholar
  39. Staub R (1960) Ernahrungsphysiologisch—Autekologische Untersuchungen an der planktonische Blaulage Oscillatoria rubescens. Schweiz Z Hydrol 23:82–198Google Scholar
  40. Suslick KS (1989) The chemical effects of ultrasound. Sci Am 260:80–86CrossRefGoogle Scholar
  41. Tang JW, Wu QY, Hao HW, Chen YF, Wu MS (2004) Effect of 1.7 MHz ultrasound on a gas-vacuolate cyanobacterium and a gas-vacuole negative cyanobacterium. Colloid Surf B Biointerfaces 36:115–121CrossRefGoogle Scholar
  42. WHO (1998) Guidelines for drinking water quality. Health criteria and other supporting information, 2nd edn., vol 2. World Health Organisation, GenevaGoogle Scholar
  43. Wu ZX, Song LR, Li RH (2008) Different tolerances and responses to low temperature and darkness between waterbloom forming cyanobacterium Microcystis and a green alga Scenedesmus. Hydrobiologia 596:47–55CrossRefGoogle Scholar
  44. Wu XG, Joyce EM, Mason TJ (2011) The effects of ultrasound on cyanobacteria. Harmful Algae 10:738–743CrossRefGoogle Scholar
  45. Wu XG, Joyce EM, Mason TJ (2012) Evaluation of the mechanisms of the effect of ultrasound on Microcystis aeruginosa at different ultrasonic frequencies. Water Res 46:2851–2858PubMedCrossRefGoogle Scholar
  46. Xu YF, Yang J, Wang YL, Liu F, Jia JP (2006) The effects of jet cavitation on the growth of Microcystis aeruginosa. J Environ Sci Heal A 41:2345–2358CrossRefGoogle Scholar
  47. Zhang G, Zhang P, Liu H, Wang B (2006) Ultrasonic damages on cyanobacterial photosynthesis. Ultrason Sonochem 13:501–505PubMedCrossRefGoogle Scholar
  48. Zhang GM, Zhang PY, Hao HW (2009) Ultrasonic control and removal of cyanobacteria, algae: nutrition, pollution control and energy sources. Nova Science Publishers, Inc, Hauppauge, pp. 89–125Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Daniel Jančula
    • 1
    Email author
  • Přemysl Mikula
    • 1
  • Blahoslav Maršálek
    • 1
  • Pavel Rudolf
    • 2
  • František Pochylý
    • 2
  1. 1.Institute of BotanyAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  2. 2.V. Kaplan Department of Fluid Engineering, Faculty of Mechanical EngineeringBrno University of TechnologyBrnoCzech Republic

Personalised recommendations