Skip to main content

Advertisement

Log in

Enrichment of the nematode Panagrolaimus sp., a potential live food for marine aquaculture, with essential n-3 fatty acids

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

The nematode Panagrolaimus sp. (strain NFS-24-5) may have potential as a live food organism for larvae of several marine species. It can be mass-produced in liquid culture and is desiccation tolerant enabling long-term storage and transportation. Nematodes lack the essential fatty acid docosahexaenoic acid (DHA), so this investigation examined an enrichment procedure by incubating nematodes in S.presso® (INVE Aquaculture, Belgium), a commercial enrichment product. Mass-produced nematodes from liquid cultures on yeast cells were cleaned and then exposed to concentrations of 0.1–3 % S.presso® for 24 h at 200,000 nematodes ml−1. Nematode viability was >90 % after the treatment. Following enrichment percentage, total lipid ranged from 23.6 to 33.3 % of nematode dry matter, and nematodes incubated in 3 % S.presso® had a significantly higher lipid percentage than untreated controls. Enrichment was successful in increasing the percentage of DHA, and a maximum value of 5.8 % of total fatty acids was achieved. The results of enrichment of Panagrolaimus sp. (strain NFS-24-5) following treatment with 3 % S.presso® should promote the carrying out of feeding trials to test the efficacy of the nematodes as a live food for larval marine fish and crustaceans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

DHA:

Docosahexaenoic acid (C 22:6n3)

EPA:

Eicosapentaenoic acid (C 20:5n3)

ARA:

Arachidonic acid (C 20:4n6)

EFA:

Essential fatty acids

lcPUFA:

Long-chain polyunsaturated fatty acids (20 or more C atoms and 3 or more double bonds)

Selco:

Self-emulsifying liquid concentrate

FAMEs:

Fatty acid methyl esters

TFA:

Total fatty acids

References

  • Ametaj BN, Bobe G, Lu Y, Young JW, Beitz DC (2003) Effect of sample preparation, length of time, and sample size on quantification of total lipids from bovine liver. J Agric Food Chem 51:2105–2110

    Article  CAS  PubMed  Google Scholar 

  • Biedenbach JM, Smith LL, Thomsen TK, Lawrence AL (1989) Use of the nematode Panagrellus redivivus as an Artemia replacement in a larval penaeid diet. J World Aquac Soc 20:61–71

    Article  Google Scholar 

  • Cahu C, Zambonino Infante J (2001) Substitution of live food by formulated diets in marine fish larvae. Aquaculture 200:161–180

    Article  Google Scholar 

  • Cequier-Sánchez E, Rodríguez C, Ravelo ANG, Zárate R (2008) Dichloromethane as a solvent for lipid extraction and assessment of lipid classes and fatty acids from samples of different natures. J Agric Food Chem 56:4297–4303

    Article  PubMed  Google Scholar 

  • Corraze G (2001) Lipid nutrition. In: Guillaume J, Kaushik S, Bergot P, Métailler R (eds) Nutrition and feeding of fish and crustaceans. Springer, London, pp 111–131

    Google Scholar 

  • De Lara R, Castro T, Castro J, Castro G (2007) Nematode culture of Panagrellus redivivus (Goodey, 1945) with Spirulina sp.-enriched oatmeal. Rev Biol Mar Oceanogr 42:29–36

    Google Scholar 

  • Dhert P (1996) Rotifers. In: Lavens P, Sorgeloos P (eds) Manual on the production and use of life food for aquaculture. FAO, Rome, pp 129–146

    Google Scholar 

  • Dhert P, Rombaut G, Suantika G, Sorgeloos P (2001) Advancement of rotifer culture and manipulation techniques in Europe. Aquaculture 200:129–146

    Article  Google Scholar 

  • FAO (2010) The state of world fisheries and aquaculture. FAO, Rome, p 197

    Google Scholar 

  • Figueiredo J, Van Woesik R, Lin J, Narciso L (2009) Artemia franciscana enrichment model—how to keep them small, rich and alive? Aquaculture 294:212–220

    Article  CAS  Google Scholar 

  • Fisher C, Fletcher D (1995) Novel feeds for use in aquaculture, Patent

  • Focken U, Schlechtriem C, von Wuthenau M, Garcia-Ortega A, Puello-Cruz A, Becker K (2006) Panagrellus redivivus mass produced on solid media as live food for Litopenaeus vannamei larvae. Aquac Res 37:1429–1436

    Article  Google Scholar 

  • Folch J, Lees N, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:487–509

    Google Scholar 

  • Glencross BD (2009) Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev Aquac 1:71–124

    Article  Google Scholar 

  • Grewal P (2002) Formulation and application technology. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, Wallingford, pp 265–287

    Chapter  Google Scholar 

  • Guillaume J, Métailler R (2001) Antinutritional factors. In: Guillaume J, Kaushik S, Bergot P, Métailler R (eds) Nutrition and feeding of fish and crustaceans. Springer, London, pp 297–308

    Google Scholar 

  • Harel M, Koven W, Lein I, Bar Y, Behrens P, Stubblefield J, Zohar Y, Place AR (2002) Advanced DHA, EPA and ArA enrichment materials for marine aquaculture using single cell heterotrophs. Aquaculture 213:347–362

    Article  CAS  Google Scholar 

  • Honnens H, Ehlers RU (2013) Liquid culture of Panagrolaimus sp. for use as food for marine aquaculture shrimp and fish species. Nematology. doi:10.1163/15685411-00002689

    Google Scholar 

  • Honnens H, Assheuer T, Ehlers RU (2013) Desiccation and storage of Panagrolaimus sp. (strain NFS-24-5). Nematology. doi:10.1163/15685411-00002701

    Google Scholar 

  • Hutzell PA, Krusberg LR (1982) Fatty acid compositions of Caenorhabditis elegans and C. briggsae. Comp Biochem Physiol B 73:517–520

    Article  Google Scholar 

  • Izquierdo MS (1996) Essential fatty acid requirements of cultured marine fish larvae. Aquac Nutr 2:183–191

    Article  CAS  Google Scholar 

  • Krusberg L, Hussey R, Fletcher C (1973) Lipid and fatty acid composition of females and eggs of Meloidogyne incognita and M. arenaria. Comp Biochem Physiol B 45:335–341

    CAS  Google Scholar 

  • Kumlu M, Fletcher DJ, Fisher CM (1998) Larval pigmentation, survival and growth of Penaeus indicus fed the nematode Panagrellus redivivus enriched with astaxanthin and various lipids. Aquac Nutr 4:193–200

    Article  CAS  Google Scholar 

  • Lavens P, Sorgeloos P (1996) Introduction. In: Lavens PS, Sorgeloos P (eds) Manual on the production and use of live food for aquaculture. FAO, Rome, pp 1–7

    Google Scholar 

  • Lavens P, Sorgeloos P (2000) The history, present status and prospects of the availability of Artemia cysts for aquaculture. Aquaculture 181:397–403

    Article  Google Scholar 

  • McEvoy LA, Navarro JC, Bell JG, Sargent JR (1995) Autoxidation of oil emulsions during the Artemia enrichment process. Aquaculture 134:101–112

    Article  CAS  Google Scholar 

  • Monroig O, Navarro JC, Amat F, Gonzalez P, Hontoria F (2006) Effect of aeration on the efficiency of Artemia enrichment with EFA-rich emulsion and liposomes. Aquaculture 257:382–392

    Article  Google Scholar 

  • Monroig O, Navarro JC, Amat F, Gonzalez P, Hontario F (2007) Oxidative stability and changes in the particle size of liposomes used in the Artemia enrichment. Aquaculture 266:200–210

    Article  CAS  Google Scholar 

  • Ricci M, Fifi AP, Ragni A, Schlechtriem C, Focken U (2003) Development of low-cost technology for mass production of the free-living nematode Panagrellus redivivus as an alternative live food for first feeding fish larvae. Appl Microbiol Biotechnol 60:556–559

    Article  CAS  PubMed  Google Scholar 

  • Rouse DB, Webster CD, Radwin IA (1992) Enhancement of the fatty acid composition of the nematode Panagrellus redivivus using three different media. J World Aquac Soc 23:89–95

    Article  Google Scholar 

  • Santiago CB, Gonzal AC, Ricci M, Harpaz S (2003) Response of bighead carp Aristichthys nobilis and Asian catfish Clarias macrocephalus larvae to free-living nematode Panagrellus redivivus as alternative feed. J Appl Ichthyol 19:239–243

    Article  Google Scholar 

  • Santiago CB, Ricci M, Reyes-Lampa A (2004) Effect of nematode Panagrellus redivivus density on growth, survival, feed consumption and carcass composition of bighead carp Aristichthys nobilis (Richardson) larvae. J Appl Ichthyol 20:22–27

    Article  Google Scholar 

  • Schlechtriem C, Ricci M, Focken U, Becker K (2004a) Mass produced nematodes Panagrellus redivivus as live food for rearing carp larvae: preliminary results. Aquac Res 35:547–551

    Article  CAS  Google Scholar 

  • Schlechtriem C, Ricci M, Focken U, Becker K (2004b) The suitability of the free-living nematode Panagrellus redivivus as live food for first-feeding fish larvae. J Appl Ichthyol 20:161–168

    Article  Google Scholar 

  • Schlechtriem C, Tocher DR, Dick JR, Becker K (2004c) Incorporation and metabolism of fatty acids by desaturation and elongation in the nematode, Panagrellus redivivus. Nematology 6:783–795

    Article  CAS  Google Scholar 

  • Tanaka T, Ikita K, Ashida T, Motoyama Y, Yamaguchi Y, Satouchi K (1996) Effects of growth temperature on the fatty acid composition of the free-living nematode Caenorhabditis elegans. Lipids 31:1173–1178

    Article  CAS  PubMed  Google Scholar 

  • Tucker J (1998) Marine fish culture. Kluwer Academic Publishers, Boston, p 760

    Book  Google Scholar 

  • Van Stappen G (1996) Artemia—introduction, biology and ecology of Artemia. In: Lavens P, Sorgeloos P (eds) Manual on the production and use of life food for aquaculture. FAO, Rome, pp 79–106

    Google Scholar 

  • Watts JL, Browse J (2002) Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans. Proc Natl Acad Sci USA 99:5854–5859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wharton D (2004) Survival strategies. In: Gaugler R, Bilgrami A (eds) Nematode behaviour. CAB International, Wallingford, pp 371–399

    Chapter  Google Scholar 

  • Wilkenfeld JS, Lawrence AL, Kuban FD (1984) Survival, metamorphosis and growth of penaeid shrimp larvae reared on a variety of algal and animal foods. J World Maric Soc 15:31–49

    Article  Google Scholar 

  • Womersley C, Wharton D, Higa L (1998) Survival biology. In: Perry R, Wright D (eds) The physiology and biochemistry of free-living and plant-parasitic nematodes. CAB International, Wallingford, pp 271–302

    Google Scholar 

Download references

Acknowledgments

This research was part of the project “Marine Aquaculture Systemic Research (MASY).” The financial support by the EU European Regional Development Fund (ERDF), the Federal Republic of Germany, and the State of Schleswig–Holstein (FET program) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf-Udo Ehlers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honnens, H., Assheuer, T. & Ehlers, RU. Enrichment of the nematode Panagrolaimus sp., a potential live food for marine aquaculture, with essential n-3 fatty acids. Aquacult Int 22, 399–409 (2014). https://doi.org/10.1007/s10499-013-9648-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-013-9648-3

Keywords