Skip to main content
Log in

Induction of viable gynogenetic progeny using eggs and UV-irradiated sperm from the Chinese tetraploid loach, Misgurnus anguillicaudatus

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

When eggs from the Chinese tetraploid loach that had 100 chromosomes were fertilized with UV-irradiated sperm, we obtained viable gynogenetic progeny without any additional treatment for the duplication of maternal chromosomes, which survived beyond first feeding towards adult stage of development. Gynogenetic progeny were determined to be diploid since they possessed 50 chromosomes, along with two chromosomes bearing nucleolar organizing regions (NORs), detected by silver nitrate staining (Ag-NORs), chromomycin-A3 (CMA3)-positive sites and fluorescence in situ hybridization (FISH) signals for rDNA loci. In contrast, when gynogens were induced using eggs from diploid loach fertilized by UV-irradiated sperm, but without chromosome doubling, we found that all resultant progeny were non-viable haploid gynogens with 25 chromosomes, along with one NOR-bearing chromosome detected by Ag-NORs, CMA3 and FISH. These observations demonstrate the true genetic tetraploid nature of the Chinese loach possessing 100 chromosomes, and the potential use of this tetraploid as a source of functional diploid gametes for further ploidy manipulation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arai K (2000) Chromosome manipulation in aquaculture: recent progress and perspective. Suisanzoshoku 48:295–303

    Google Scholar 

  • Arai K (2001) Genetic improvement of aquaculture finfish species by chromosome manipulation techniques in Japan. Aquaculture 197:205–228

    Article  CAS  Google Scholar 

  • Arai K (2003) Genetics of the loach, Misgurnus anguillicaudatus: recent progress and perspective. Folia Biol (Krakow) 51:107–117

    Google Scholar 

  • Arai K, Matubara K, Suzuki R (1991a) Karyotype and erythrocyte size of spontaneous tetraploidy in the loach Misgurnus anguillicaudatus. Nippon Suisan Gakkaishi 57:2167–2172

    Article  Google Scholar 

  • Arai K, Matubara K, Suzuki R (1991b) Chromosomes and developmental potential of progeny of spontaneous tetraploid loach Misgurnus anguillicaudatus. Nippon Suisan Gakkaishi 57:2173–2178

    Article  Google Scholar 

  • Arai K, Masaoka T, Suzuki R (1992) Optimum condition of UV ray irradiation for genetic inactivation of loach eggs. Nippon Suisan Gakkaishi 58:1197–1201

    Article  CAS  Google Scholar 

  • Arai K, Matsubara K, Suzuki R (1993) Production of polyploids and viable gynogens using spontaneously occurring tetraploid loach, Misgurnus anguillicaudatus. Aquaculture 117:227–235

    Article  Google Scholar 

  • Arai K, Ikeno M, Suzuki R (1995) Production of androgenetic diploid loach Misgurnus anguillicaudatus using spermatozoa of natural tetraploids. Aquaculture 137:131–138

    Article  Google Scholar 

  • Arai K, Taniura K, Zhang Q (1999) Production of second generation progeny of hexaploid loach. Fish Sci 65:186–192

    CAS  Google Scholar 

  • Arai K, Sakao S, Fujimoto T, Yamaha E (2010) Cutting edge of chromosome manipulation for aquaculture and conservation of salmonids. Natl Taiwan Mus Spec Publ 14:49–52

    Google Scholar 

  • Chourrout D (1982) Gynogenesis caused by ultraviolet irradiation of salmonid sperm. J Exp Zool 223:175–181

    Article  PubMed  CAS  Google Scholar 

  • Chourrout D, Chevassus B, Herioux F (1980) Analysis of an Hertwig effect in the rainbow trout (Salmo gairdneri Richardson) after fertilization with gamma-irradiated sperm. Reprod Nutr Dev 20(3A):719–726

    Article  PubMed  CAS  Google Scholar 

  • Chourrout D, Chevassus B, Krief F, Happe A, Burger G, Renard P (1986) Production of second generation triploid and tetraploid rainbow trout by mating tetraploid males and diploid females—potential of tetraploid fish. Theor Appl Genet 72:193–206

    Article  Google Scholar 

  • Fujimoto T, Sakao S, Yamaha E, Arai K (2007) Evaluation of different doses of UV irradiation to loach eggs for genetic inactivation of the maternal genome. J Exp Zool Part A 307:449–462

    Google Scholar 

  • Fujimoto T, Yasui GS, Hayakawa M, Sakao S, Yamaha E, Arai K (2010) Reproductive capacity of neo-tetraploid loaches produced using diploid spermatozoa from a natural tetraploid male. Aquaculture 308:S133–S139

    Article  Google Scholar 

  • Howell WM, Black DA (1980) Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36:1014–1015

    Article  PubMed  CAS  Google Scholar 

  • Inokuchi T, Abe S, Yamaha E, Yamazaki F, Yoshida MC (1994) BrdU replication banding studies on the chromosomes in early embryos of salmonid fishes. Hereditas 121:255–265

    Article  Google Scholar 

  • Kurokura H, Hirano R, Tomita M, Iwahashi M (1984) Cryopreservation of carp sperm. Aquaculture 37:267–273

    Article  Google Scholar 

  • Kusunoki T, Arai K, Suzuki R (1994) Production of viable gynogens without chromosome duplication in the spinous loach Cobitis biwae. Aquaculture 119:11–23

    Article  Google Scholar 

  • Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220

    Article  Google Scholar 

  • Li Y-J, Yin J, Wang J-B, Yuan X, Wei J, Sun X-W, Arai K (2008) A study on the distribution of polyploidy loaches in China. Nippon Suisan Gakkaishi 74:177–182

    Article  Google Scholar 

  • Li Y-J, Tian Y, Zhang M-Z, Tian P-P, Yu Z, Abe S, Arai K (2010) Chromosome banding and FISH with rDNA in the diploid and tetraploid loach Misgurnus anguillicaudatus. Ichthyol Res 57:358–366

    Article  Google Scholar 

  • Liu S, Liu Y, Zhou G, Zhang X, Luo C, Feng H, He X, Zhu G, Yang H (2001) The formation of tetraploid stocks of red crucian carp × common carp hybrids as effect of interspecific hybridization. Aquaculture 192:171–186

    Article  Google Scholar 

  • Matsubara K, Arai K, Suzuki R (1995) Survival potential and chromosomes of progeny of triploid and pentaploid females in the loach, Misgurnus anguillicaudatus. Aquaculture 131:37–48

    Article  Google Scholar 

  • Morishima K, Horie S, Yamaha E, Arai K (2002) A cryptic clonal line of the loach Misgurnus anguillicaudatus (Teleostei: Cobitidae) evidenced by induced gynogenesis, interspecific hybridization, microsatellite genotyping and multilocus DNA fingerprinting. Zool Sci 19:565–575

    Article  PubMed  Google Scholar 

  • Nagy A, Rajki K, Horvath L, Csanyi V (1978) Investigation on carp Cyprinus carpio L. gynogenesis. J Fish Biol 13:215–224

    Article  Google Scholar 

  • Nam YK, Choi GC, Park DJ, Kim DS (2001) Survival and growth of induced tetraploid mud loach. Aquacult Int 9:6–11

    Article  Google Scholar 

  • Ojima Y, Takai A (1979) The occurrence of spontaneous polyploidy in the Japanese common loach, Misgurnus anguillicaudatus. Proc Japan Acad 55B:487–491

    Google Scholar 

  • Onozato H (1982) The “Hertwig effect” and gynogenesis in chum salmon Oncorhynchus keta eggs fertilized with 60Co gamma-ray irradiated milt. Bull Jpn Soc Sci Fish 48:1237–1244

    Article  CAS  Google Scholar 

  • Onozato H, Yamaha E (1983) Induction of gynogenesis with ultraviolet rays in four species of salmoniformes. Bull Jpn Soc Sci Fish 49:693–699

    Article  Google Scholar 

  • Sakao S, Fujimoto T, Kimura S, Yamaha E, Arai K (2006) Drastic mortality in tetraploid induction results from the elevation of ploidy in masu salmon Oncorhynchus masou. Aquaculture 252:147–160

    Article  Google Scholar 

  • Schweizer D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58:307–324

    Article  PubMed  CAS  Google Scholar 

  • Schweizer D, Ambros P, Andrle M (1978) Modification of DAPI banding on human chromosomes by prestaining with a DNA-banding oligopeptide antibiotic, distamycin A. Exp Cell Res 111:327–332

    Article  PubMed  CAS  Google Scholar 

  • Suzuki R, Yamaguchi M (1975) Influence of water temperature on inducing spawning by hormone injection in the loach, cyprinid fish. Suisanzoshoku 22:135–139

    Google Scholar 

  • Suzuki R, Oshirao T, Nakanishi T (1985) Survival, growth and fertility of gynogenetic diploids induced in the cyprinid loach, Misgurnus anguillicaudatus. Aquaculture 48:45–55

    Article  Google Scholar 

  • Yasui GS, Fujimoto T, Arai K (2010) Restoration of the loach, Misgurnus anguillicaudatus, from cryopreserved diploid sperm and induced androgenesis. Aquaculture 308:S140–S144

    Article  Google Scholar 

  • Zhang Q, Arai K (1996) Flow cytometry for DNA contents of somatic cells and spermatozoa in the progeny of natural tetraploid loach. Fish Sci 62:870–877

    CAS  Google Scholar 

  • Zou S, Li S, Cai W, Zhao J, Yang H (2004) Establishment of fertile tetraploid population of blunt snout bream (Megalobrama amblycephala). Aquaculture 238:155–164

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grants-in-Aid for Scientific Research (B) (No. 21380114) from the Japan Society for the Promotion of Science (JSPS) to Katsutoshi Arai and by the Ronpaku (Dissertation Ph.D.) Program (CSC-10610) from JSPS to Ya-Juan Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsutoshi Arai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YJ., Yu, Z., Zhang, MZ. et al. Induction of viable gynogenetic progeny using eggs and UV-irradiated sperm from the Chinese tetraploid loach, Misgurnus anguillicaudatus . Aquacult Int 21, 759–768 (2013). https://doi.org/10.1007/s10499-012-9551-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-012-9551-3

Keywords

Navigation